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1 Introduction

LLNL hydrologic source term modeling at the Cambric site (Pawloski et al., 2000) showed that
retardation of radionuclide transport is sensitive to the distribution and amount of radionuclide
sorbing minerals. While all mineralogic information available near the Cambric site was used in
these early simulations (11 mineral abundance analyses from UE-5n and 9 from RNM-1), these
older data sets were qualitative in nature, with detection limits too high to accurately measure
many of the important radionuclide sorbing minerals (e.g. iron oxide). Also, the sparse nature of
the mineral abundance data permitted only a hypothetical description of the spatial distribution
of radionuclide sorbing minerals. Yet, the modeling results predicted that the spatial distribution
of sorbing minerals would strongly affect radionuclide transport. Clearly, additional data are
needed to improve understanding of mineral abundances and their spatial distributions if model
predictions in Frenchman Flat are to be defensible.

This report evaluates new high-resolution quantitative X-Ray Diffraction (XRD) data on mineral
distributions and their abundances from core samples recently collected from drill hole ER-5-4.
The total of 94 samples from ER-5-4 were collected at various spacings to enable evaluation of
spatial variability at a variety of spatial scales as small as 0.3 meters and up to hundreds of
meters. Additional XRD analyses obtained from drillholes UE-5n, ER-5-3, and U-11g-1 are
used to augment evaluation of vertical spatial variability and permit some evaluation of lateral
spatial variability. A total of 163 samples are evaluated.

Recently, Los Alamos National Laboratory (LANL) and IT Corporation provided a detailed
analysis of lithology and mineral distribution based on XRD, X-Ray Fluorescence (XRF),
Scanning Electron Microscopy (SEM), petrography, and electron microprobe data from ER-5-4
as well as several other drill holes (Warren et al., 2002). These results provide the foundation for
our geostatistical analysis of the XRD data. The origin of the XRD data and procedures used to
obtain it are described in Chapter 2. The remainder of this report analyzes the spatial variability
of the XRD data using geostatistical techniques. An important goal is to develop acceptable
models of heterogeneity of mineral abundances and distribution coefficient (K;;) that can be
incorporated into reactive transport modeling at hydrologic source term (HST) and Corrective
Action Unit (CAU) scales.

Before spatial variability can be quantitatively characterized using variograms and stochastic
simulation algorithms, the frequency distributions and spatial variability of the data must be
examined for deviations from the normality and stationarity assumptions employed in
geostatistics. This preliminary data analysis is described in Chapter 3. While the emphasis of
our statistical analysis is placed on radionuclide sorbing minerals included in a mechanistic
sorption model (iron oxide, smectite, calcite, zeolite, and mica/illite), data regarding other
primary and secondary minerals are also evaluated. This is done to
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e evaluate whether statistically significant correlations can be made between
radionuclide sorbing and non-sorbing minerals (Section 3.4), and

e compare our mineralogic interpretations and geostatistical analyses of spatial
variability of sorbing mineral abundance with the alluvial layering interpretations by
Warren et al. (2002) (Section 3.5).

Because the mineralogic spatial variability is in part attributed to geology, consideration of
geologic processes such as alluvial layering described by Warren et al. (2002) needs to be
integrated into the geostatistical analysis.

This report also evaluates the mineral abundance data from the perspective of modeling
radionuclide transport using particle tracking. In Chapter 4, the XRD data are converted to
distribution coefficients (K;) based on a mechanistic sorption model developed at LLNL
(Zavarin and Bruton, 2000a; 2000b; Zavarin et al., 2002).l Frequency distributions and depth
profiles of K, are evaluated for a variety of radionuclides.

Chapter 5 conducts variogram analyses on both mineral abundance and K, data. The mineral
abundance data are categorized into “mineralization zones,” where mineral abundance appears
uniform in mean and variance, or, statistically “stationary” as described in Chapter 3. Within the
mineralization zones, all of the sorbing and non-sorbing minerals except for hematite exhibit
mostly random spatial variation. Spatial continuity of K, is evident in variogram analyses and is
primarily associated with variations in mineral abundance between different mineralization
zones. Variogram models for K; are developed for both vertical and lateral directions.

Chapter 6 employs the results of the analyses of spatial variability in the previous chapters to
develop methods for simulating the spatial variability of mineral abundances and K;. One
approach is based on the concept of “chemofacies,” where alluvial zones or layers have
relatively uniform mean values of sorbing minerals. The three-dimensional geometry of the
chemofacies are partly associated with the alluvial layers interpreted by Warren et al. (2002).
The other approach employs the geostatistical concept of random fields and is applicable to K,
only. For most radionuclides, spatial variation of K, throughout large portions of Frenchman
Flat could be realistically simulated by Gaussian random fields. The exceptions are
radionuclides such as Ca and Sr that are very sensitive to clinoptilolite abundance, which varies
significantly between central and northern Frenchman Flat. Alternatively, a hybrid zonal and
random field approach is demonstrated for generation of random fields of K, for Ca and Sr.

Chapter 7 summarizes the interpretations and conclusions of the report. Chapter 8 provides
references.

' Linking a mechanistic sorption model to a K; model was described in a recent report (Zavarin, 2002).
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Figure 1.1 provides a diagram illustrating the approaches taken in analyzing spatial variability of
sorbing mineral abundances and K, in Frenchman Flat, given the available data. The top of the
figure illustrates hypothetical depth profiles of the mineral abundances. Based on interpretation
of zonal variations of mean mineral abundances, mineralization zones are identified as indicated
by the colored regions. The alluvial layering interpretation by Warren et al. (2002), which is
based on a more comprehensive geologic interpretation, shows some similarities and differences
compared to mineralization zones in defining unit boundaries. The K, random field approach,
shown at left, treats K, as a random variable throughout Frenchman Flat alluvium, independent
of mineralization zone. Based on the component additivity approach, K;s are generated for each
radionuclide (middle left), spatial variability of K; within Frenchman Flat is modeled with
variograms (bottom left), and stochastic random fields based on Gaussian random fields are be
developed (bottom middle).

In the chemofacies approach, variogram analysis is applied to assess spatial variability within
mineralization zones (middle right). In this application, only hematite exhibited measurable
spatial correlation within a mineralization zone, with a vertical range of spatial correlation of
about 5 m. Therefore, the spatial variation of mineral abundances and K, within mineralization
zones is, for practical purposes, entirely attributed to random variation. Therefore, zones which
have relatively constant zonal mean abundances of sorbing minerals — chemofacies — will also
have relatively constant K;s. Because the chemofacies are related to the alluvial layering
interpretation by Warren et al. (2002), three-dimensional models of sorbing mineral abundance
or K, could be developed using the geometric framework of ailuvial layering (not shown).
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2 Mineral Abundance Data Included in the
Geostatistical Analysis

The geostatistical evaluation of mineral distribution in Frenchman Flat alluvium is based on
recent quantitative X-Ray Diffraction (XRD) data collected on alluvium from four wells:
ER-5-4, ER-5-3, UE-5n, and U-11g-1 (Figure 2.1). Sampling of well ER-5-4 was performed for
the specific purpose of evaluating spatial variability of mineral abundance, with sampling
intervals ranging from 0.3 to 10 meters and spanning nearly 1000 meters (Figure 2.2). Sampling
intervals were chosen to enable evaluation of both small and large scale mineral spatial
variability. Samples from well UE-5n were included in our analysis to evaluate lateral
variability (UE-5n is located 477 meters from ER-5-4). UE-5n alluvium samples were collected
in 1976 and stored at the NTS; small sub-samples were taken for quantitative XRD analysis.
Samples from wells ER-5-3 and U-11g-1 were also included in our analysis to compare
mineralogies of northern and central Frenchman Flat. Samples from ER-5-3 were collected as
part of the UGTA program in FY01. U-11g-1 core was collected in 1971 and stored at the NTS;
small subsamples were taken for quantitative XRD.

The quantitative XRD data discussed in this report were collected at Los Alamos National
Laboratory and analyzed using the computer code FULLPAT (Chipera and Bish, 2001).
Detailed descriptions of the data are reported in Warren et al. (2002) and will not be repeated
here. While older XRD data exist for wells UE-5n, U-11g-1, and several other wells in
Frenchman Flat, they were not included in our analysis. There are several issues that make
inclusion of older XRD data problematic. First, many of the older data sets report mineral
abundances for only a select number of minerals. Second, detection limits of the older data sets
were, in all cases, much higher. Third, as pointed out in Warren et al. (2002), the data analysis
methodology used to analyze older data sets was less rigorous, resulting in inconsistencies
between recent quantitative XRD and older “qualitative” XRD data (see Warren et al., 2002
discussion of UE-5n data). To simplify the statistical interpretation of XRD data, we relied
solely on recent quantitative XRD data reported in Warren et al. (2002).

It is important to distinguish the difference in approach used here and in Warren et al. (2002). In
our analysis, we rely solely on the geostatistical evaluation of mineralogic abundance data based
on recent quantitative XRD analyses. The interpretation of alluvial layering by Warren et al.
(2002) was based on a combination of XRD, x-ray fluorescence (XRF), scanning electron
microscopy (SEM), electron microprobe, and petrographic analyses, as well as historical data.
Our statistical analysis is focused on sorbing minerals included in our mechanistic sorption
model (iron oxide, smectite, illite/mica, zeolite, and calcite). Our approach should, therefore, be
distinguished from that of Warren et al. (2002) in that it is not focused on alluvial layering but is,
instead, focused on spatial variability of sorbing mineral abundances from the perspective of
conducting simulations of reactive transport. Nevertheless, the interpretations of alluvial layers
and sorbing mineral abundances share much in common, as will be discussed in various sections
of this report.

In this report, we did not directly integrate the three component model described in Warren et al.
(2002) into our analysis of spatial variability of mineral abundances. The three component
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model (i.e. division of alluvium into crystals (phenocrysts), lithics/pyroclasts, and reactive
matrix) and an index of reactive mineral accessibility were used in Warren et al. (2002) to assess
whether reactive minerals may not be accessible to fluids and, thus, not contribute to
radionuclide sorption. While these data were not included directly in our model, the information
provided regarding sorbing mineral accessibility is consistent with recent mechanistic sorption
model validation experiments (Zavarin et al., 2002). In these validation experiments, it was
found that iron oxide reactivity is much lower than predicted based on batch single mineral
laboratory studies. The information provided in Warren et al. (2002) suggests that the reduced
reactivity can be understood based on the three component model and reactive mineral
accessibility. The iron oxide (referred to in XRD data tables as hematite) abundance reported in
quantitative XRD analyses, in reality, includes magnetite, maghemite, limonite (goethite),
hematite, and hydrous ferric oxide minerals. Warren et al. (2002) found that the majority of the
iron oxide (from petrographic analyses) occur as altered magnetite phenocrysts within the matrix
and the lithics. The size of the magnetite phenocrysts, based on petrographic thin sections (see
Figure 36 of Warren et al. (2002)), suggests that the surface area of these iron oxides will be
quite low (calculated to be ~0.02 m?/g based on simple cubic mineral particle assumption). This
fraction of iron oxide should not contribute significantly to radionuclide retardation simply
because the reactive surface area is too small to be significant (particularly in light of the low
iron oxide mineral abundances of this alluvium). Thus, the dominant fraction of iron oxide
would not be expected to contribute significantly to radionuclide retardation. Based on the
petrographic analyses, the most accessible and high surface area iron oxide fraction (limonite in
the matrix component) comprises only 3.5% of the total iron oxide. This is in general agreement
with SEM-based evaluation of iron oxide accessibility. This is also in general agreement with
our mechanistic sorption model validation experiments which suggested that the average iron
oxide surface area must be in the range of 0.2 mz/g, a surface area much lower than that observed
for synthetic high surface area iron oxides (e.g. 50 m%/g for goethite). By using the adjusted low
reactive surface area of iron oxides, we are indirectly accounting for the complex iron oxide
mineralogy suggested in Warren et al. (2002).
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3 Preliminary Data Interpretation

The overall goal of this study is to understand and characterize the spatial variation of sorbing
minerals in Frenchman Flat alluvium, with consideration for the potential impact on reactive
transport of radionuclides.” To achieve this goal requires an effort to ensure that plausible
statistical models are used to characterize the spatial variation of minerals. The statistical models
must also be plausible from a geological perspective. The spatial variation of mineral abundance
cannot be entirely attributed to random processes. Geologic processes such as alluvial fan
progradation, commingling, provenance (origin and source of the rock), and in-situ alteration
dictate the spatial distribution of minerals. Nonetheless, analysis of spatial variation of mineral
abundance with respect to random variable concepts will be useful for modeling field-scale
transport.

In this chapter, we interpret the XRD data on mineral abundances from drillholes ER-5-4, ER-5-3,
UE-5n, and U-11g-1 in Frenchman Flat using univariate and bivariate statistics as a preliminary
step to performing geostatistical analysis of spatial variability of mineral abundances and K (see
Chapters 5 and 6). The purpose of the preliminary data interpretation is to understand the
statistical characteristics of the data that will affect variogram analysis discussed in Chapter 5.
Before variogram analysis can begin, the topics of “stationarity” and normality must be addressed.

Geostatistical analyses typically employ the concepts of statistical stationarity of the mean or
variance and normality in the frequency distribution. For clarification, stationarity means that
the statistical properties (such as the mean and variance) of a random variable (such as mineral
abundance) do not vary in space (within the region of interest). From a geological perspective, a
geologic attribute could be considered statistically stationary if its mean value and degree of
fluctuation is uniform through the region of interest. For example, the mean and variance of
particle size could be assumed stationary in a poorly-sorted layer, but non stationary in a fining-
upward layer. Stationarity of the mean or “first-order stationarity” occurs if the local mean does
not depend on location (e.g., vertical position in a layer). Second-order stationarity occurs if
both the mean and spatial covariance do not depend on location. In geostatistics, another form of
stationarity called “intrinsic stationarity” is often assumed, where the local mean can vary
smoothly in space but the variance remains stationary. The concept of intrinsic stationarity is
useful in applications where the data exhibit fluctuations about a trend.

A normal (Gaussian) frequency distribution is usually assumed in a geostatistical analysis, not
only because the normal distribution is a common model for random processes, but because the
normal distribution is characterized entirely by the mean and variance (no third or higher order
statistics are needed). Successful application of geostatistical techniques greatly depends on the
appropriateness of the stationarity and normality assumptions. Therefore, it is good practice to
carefully examine the data for nonstationarity in the mean (e.g., trends) and variance (e.g., spatial
variations in the degree of fluctuation) and deviation from normality before carrying out the

* In this report, we define sorbing minerals based on the surface complexation/ion exchange model developed for
‘near-field hydrologic source term modeling. In this model, sorbing minerals include: iron oxide, smectite,
illite/mica, zeolite (clinoptilolite), and calcite. While other minerals may, in fact, sorb radionuclides, we use the
term “sorbing minerals” strictly to refer to five minerals included in our sorption model.
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variogram analysis. Otherwise, the variogram analysis may produce spurious results that
introduce artifacts or mask out valuable information in the data.

Twenty-one different minerals were identified in the high-quality XRD data for drillholes
ER-5-4, ER-5-3, UE-5n, and U-11g-1 in Frenchman Flat (Warren et al., 2002). We present these
data in several different formats to address several opening questions about mineralogic spatial
variation:

¢ Do the mineral abundances vary with depth and location in Frenchman Flat?

e How much of the spatial variation can be characterized by random processes, and
how much of the spatial variation must be attributed to ordered geologic processes?

e Do the sorbing mineral abundances show significant correlation with non-sorbing
minerals?

To address the first question, we plot the abundance of each mineral (mass percent based on
XRD) on a log scale versus depth. These plots can be used to evaluate whether spatial variation
of mineral abundances is in part related to random or “micro-scale” variability, and in part
related to geological conditions, such as distinct zones or “layers” (Section 3.1). To address the
second question, data are plotted as histograms and normal probabilities on both linear and log
scales (Section 3.2). The frequency distributions (histograms) and normal probability plots call
attention to different zones or layers — the non-random components of variation (Section 3.3).
Finally, to address the third question, scatterplots are used to examine correlation between
abundances of different minerals (Section 3.4). Statistical tests are used to determine whether
correlations are significant between abundances of the sorbing minerals and different sorbing or
non-sorbing minerals.

The combined interpretation of the mineral abundance versus depth, the linearly and
logarithmically-scaled frequency distributions and normal probabilities, and the mineral abundance
correlations are used to identify zones where the mean abundances of individual minerals appear
stationary. Within these zones, the variogram analysis can be performed with more confidence
because first-order stationarity and normality assumptions are appropriate. The identification of
statistically stationary mineralogic zones is related to the geological interpretation of alluvial layers
identified by Warren et al. (2002). However, it is important to distinguish the difference in
approach used here and in Warren et al. (2002). In our interpretations, we rely solely on the
statistical evaluation of mineralogic abundance data based on the XRD analyses. The
interpretation of alluvial layering of Warren et al. (2002) was based on a combination of XRD,
x-ray fluorescence (XRF), scanning electron microscopy (SEM), electron microprobe, and
petrographic analyses. Because our statistical analysis was focused on sorbing minerals included
in our mechanistic sorption model (iron oxide, smectite, illite/mica, zeolite, and calcite), our
interpretation of layering is biased towards these minerals. Our approach should, therefore, be
distinguished from that of Warren et al. (2002) in that it is not focused on alluvial layering but is,
instead. focused on zones within the alluvial section that are of direct relevance to reactive
transport, which we refer to as “mineralization zones.” Nevertheless, the interpretations of alluvial
layering and mineralization zones share much in common, as will be discussed later in Section 3.5.
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3.1 Mineral Abundance vs. Depth

Figures 3.1 to 3.4 show plots of mineral abundance (mass percent based on XRD) on a log scale
versus depth. The log scale is useful for spanning the nearly three orders of magnitude range in
measured abundance of different minerals. The log scale is particularly useful for comparing
low abundance minerals, such as hematite, to high abundance minerals, such as smectite, on the
same plot. Because there are 21 different minerals observed in 4 different drillholes, the plots of
mass percent versus depth are divided into groups of minerals as well as by drillhole. Each
figure represents a different drillhole. In each figure, the minerals included in the mechanistic
sorption model (calcite, hematite, mica, smectite, and clinoptilolite (a zeolite)) are plotted in the
upper left;* dolomite, kaolinite, glass, analcime (a zeolite), and mordenite (a zeolite) are plotted
in the upper right; feldspars, including orthoclase (low-T feldspar) and sanidine (high-T feldspar)
K-feldspars and albite, bytownite, and anorthite* plagioclase feldspars are plotted in the lower
left; opal, quartz, tridymite, hornblende, and clinopyroxene are plotted in the lower right.

Figure 3.1 shows the mineral abundance data for ER-5-4. This data set includes 94 samples
obtained over a range of depth from about 192 to 1134 m. This is the most extensive and
detailed mineralogic data set for any drillhole in Frenchman Flat. Data spacing is variable,
typically from about 0.3 m (1 ft) to about 15 m (50 ft). The variable data spacing promotes
examination of the vertical variability at a range of scales given a limited number of samples.
Mineral abundances range from 0.1 to over 80 mass percent. The lower detection limit is, at
best, 0.1 mass percent, depending on the mineral. Detailed information regarding the XRD
analysis can be found in Warren et al. (2002). Mineral abundances below the detection limit are
not shown on the depth plots. For example, clinopyroxene was not detected in any samples from
ER-5-4 and was, therefore, not plotted. Dolomite is detected sporadically — where not plotted,
the dolomite abundance was below the detection limit of 0.1 %.

Upon close examination of the mineral abundance data for ER-5-4, it appears that the mineral
percentages typically exhibit smaller scale variability superposed on a larger-scale variability.
The smaller scale variability is evident by a “cloud” or “scatter” of mineral percentages where
data are closely spaced. The smaller scale variability generally occurs over scales less than the
smallest data spacing of 0.3 m (or 1 ft). As a result, a structured pattern of small-scale spatial
variability is generally not evident in the data. From a transport modeling perspective at CAU or
HST scales, the small-scale variability in the mineralogy will be more practically addressed by
use of effective properties rather than explicit of point values (see Chapter 6).

The larger (subregional) scale variability appears to occur in zones. In a zone, the means and
variances of one or more minerals are different than in surrounding zones. For example, in the
depth range of about 315 to 340 m, clinoptilolite and cristobalite show large differences in both
mean and variance compared to their mineral abundances above and below. The clinoptilolite
percentage 1s relatively high, while the cristobalite percentage is relatively low. Also with
respect to depths above and below that zone, kaolinite is largely absent, opal is sporadically
present, and some minerals, such as smectite and bytownite, appear to have larger variances but

* The mechanistic sorption model is discussed in Chapter 4.
* Only one sample contained anorthite (Ca-plagioclase). Generally, plagioclase was divided into albite (Na-
plagioclase) and bytownite (Nag 39 1Cax-plagioclase).

3-3



similar means. Another distinctive zone occurs between depths of about 700 and 780 m, where
mean values of calcite and dolomite are relatively high, clinoptilolite is moderately high,
orthoclase and bytownite feldspars are relatively low, and hornblende is not detected. A
complete interpretation of mineralization zones for all drillholes is discussed in Section 3.3.

Figure 3.2 shows the mineral abundance data for drillhole UE-5n, which is located 477 m SSE of
drillhole ER-5-4. Comparison of mineralogic data from drillholes ER-5-4 and UE-5n offers an
opportunity to examine lateral continuity of the mineral abundances. The XRD data for UE-5n
span a range of depth from about 210 to 475 m. The zonal mean values of the mineralogic
abundances in drillholes ER-5-4 and UE-5n appear to correlate very closely in this depth range.
Mineral abundances between depths of about 344 and 379 m in drillhole UE-5n appear to
correlate with the distinctive zone in drillhole ER-5-4 between the 315 and 340 m depth range
noted above. Most obviously in this zone, the clinoptilolite abundance is elevated, and the
cristobalite abundance is diminished. Kaolinite is not present. This example clearly shows that
certain zones of mineral abundance may be recognized and correlated laterally to different
drillholes in southern Frenchman Flat over scales of hundreds of meters, as indicated by Warren
et al. (2002) for alluvial layers.

Figure 3.3 shows the mineral abundance data for ER-5-3, which is located in northern
Frenchman Flat 5855 m NNE of ER-5-4. The mineral abundance data in ER-5-3 span depths
between about 90 and 610 m. It is expected that the provenance of alluvium will exhibit
differences between central and northern Frenchman Flat. Warren et al. (2002) point out that
alluvium from ER-5-4 and UE-5n is vitric and chemically resembles the Wahmonie Formation,
but also shows some influence from other prominent lithologies proximal to Frenchman Flat.
Alluvium from ER-5-3 and U-11g-1 chemically resembles regional ash flow tuffs and is
predominantly zeolitic rather than vitric. The differences are evident by comparison of mineral
abundances in ER-5-4 and ER-5-3 (Figures 3.1 and 3.3). Among the sorbing minerals, ER-5-3
exhibits several differences with respect to ER-5-4 over a similar depth range:

e larger abundances of clinoptilolite,

slightly lower abundances of mica at greater depth,
¢ <0.1 mass percent hematite below about 460 m depth,

e more extensive zones of high calcite abundance, and

slightly lower smectite abundance at greater depths.

Overall, the depth profiles of sorbing mineral abundances are clearly different between driltholes
ER-5-3 and ER-5-4. In addition, no obvious correlation of zonal mean mineral abundances is
evident, as will be discussed later in this chapter.

The depth profiles of non-sorbing mineral abundances are also very different between ER-5-3
and ER-5-4. For example:
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e No dolomite appears in ER-5-3 (below detection limit), although it occasionally
appears in ER-5-4.

e Kaolinite is generally present to a depth of 1000 m (except for the 315 to 340 m depth
range) in ER-5-4, but only to a depth of about 390 m in ER-5-3 (except for the 180 to
270 m depth range).

e Glass is abundant in ER-5-4 and sporadic in ER-5-3.

e Cristobalite abundance is consistently lower in ER-5-3 below a depth of about 220 m.

e The zeolites analcime and mordenite appear occasionally in ER-5-3, but not in
ER-5-4.

o Orthoclase (low-T K-feldspar) abundance is consistently lower in ER-5-3 below a
depth of about 230 m.

e Bytownite (plagioclase) abundance is typically lower in ER-5-3.

e Opal is rare in ER-5-4, but generally ubiquitous in ER-5-3 below a depth of about 200
m.

¢ The quartz fraction is usually higher in ER-5-3.

¢ Tridymite is absent below a depth of about 200 m in ER-5-3 and below a depth of
about 700 m in ER-5-4 (except for the 315 to 340 m interval).

Interestingly, sanidine (high-T K-feldspar) and albite (Na-plagioclase) abundances exhibit
similar decreases below similar depths of about 230-310 m.

Figure 3.4 shows mineral abundance data for U-11g-1, located 720 m NNE of ER-5-3. Mean
zonal abundances appear to correlate between U-11g-1 and ER-5-3 at similar depths, suggesting
that zones with similar abundances of minerals or alluvial layers defined by Warren et al. (2002)
may be laterally extensive over scales of hundreds of meters in the northern Frenchman Flat area.
However, due to the limited XRD data for U-11g-1, this correlation is not verified at all depths.
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ground surface. Data from Warren et al. (2002).
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Figure 3.4 Mineral abundance data from drillhole U-11g-1 obtained by XRD analysis. Depth
relative to ground surface. Data from Warren et al. (2002).

3.2 Univariate Statistics

Univariate statistics are functions of one variable, such as mineral percentage. A bivariate
statistic is a function of two variables, such as mineral percentage at one location and mineral
percentage at another location (e.g. spatial correlation or variogram) or mineral percentage of
two different minerals at the same location (e.g., correlation).

Typical univariate statistics of interest are mean, variance, and median as well as the entire
frequency distribution (histogram). This section examines the frequency distributions of the
mineral abundances to help identify and distinguish “zones” having consistent mean and random
variability of mineral abundances. Based on our preliminary interpretation of the mineral
fraction data versus depth (section 3.1), the major non-random cause of spatial variability of
mineral abundances appears to be zonal. The zonal variation is primarily attributed to
differences in provenance of alluvial layers (Warren et al., 2002).

Both histograms and normal probability plots will be used to examine the frequency
distributions. Normal probability plots provide means for examining the frequency distribution
relative to a normal (Gaussian) distribution. If the frequency distribution of the data is normal,
the data will plot as a straight line on the normal probability plot. An important reason for
examining the histograms and probability plots is to identify sub-populations within the data that
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appear to correspond to distinct zones. Data having different sub-populations with different
means and variances may show distinct peaks on the histograms and segmented lines of different
slope on the normal probability plot. The histograms and normal probability plots are scaled
both linearly and logarithmically to examine the shape of the frequency distributions. In some
cases either the linear or logarithmic (log) scale is more useful, so both are shown for all
minerals. The log scale is particularly useful for minerals that exhibit a large range in
abundance, such as calcite and clinoptilolite.

3.2.1 Histograms

Histograms are useful for examining the variation of mineral abundance in several ways:

to illustrate the range of mineral abundances,
¢ to illustrate the most frequent mineral abundances,

e to examine the shape of the distribution compared to a normal or log-normal
distribution, and

e to examine the possibility of bi-modal or multi-modal distributions indicating two or
at least three distinct sub-populations, respectively, within the frequency distribution.

Histograms are presented both on a linear and logarithmic scale. For some minerals, linearly
scaled histograms have large right-skewness, indicating that the frequency distributions are better
viewed with a log scale. Right skewness in the linearly scaled histogram tends to occur for
minerals that have a large range in mineral abundance, such as calcite and clinoptilolite.

The histograms are presented along with several univariate statistics — mean, standard
deviation, coefficient of variation, minimum and maximum, median (50" percentile), and lower
and upper quartiles (25" and 75" percentiles) — at upper right. The coefficient of variation is
the mean divided by the standard deviation, which measures the degree of spread in the
distribution. A coefficient of variation of 1.0 or greater indicates either a relatively large range
of values, a large skewness, or a bi- or multi-modal distribution. Comparison of the mean to the
median also indicates skewness; if the median is significantly less than the mean, the distribution
is skewed right.

3.2.1.1 Linearly Scaled Histograms

Figures 3.5 to 3.8 show histograms of mineral abundance (mass percentage based on XRD data)
on a linear scale for all 21 minerals from ER-5-3, ER-5-4, UE-5n, and U-11g-1. Some distinct
sub-populations within the frequency distributions are readily recognized. Some of the
distributions are bi- or multi-modal. Often, the mineral abundance for many samples is below
the detection limit (mineral abundances reported as below the detection limit were included as
0% in the summary statistics and histograms). For example, the left-most peak on hematite
histogram indicates that a large number of samples contained iron oxide abundances below the
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detection limit. The frequency scale (y-axis) on the histogram for hematite indicates that the
hematite is below the detection limit in about 19% of the data. The histograms, in conjunction
with the depth versus mineral abundance plots (Figures 3.1 to 3.4), indicate several other
minerals with abundance frequently below the detection limit — dolomite, kaolinite, analcime,
mordenite, clinopyroxene, glass, cristobalite, opal, tridymite, sanidine, albite, and anorthite.
Other minerals — mica, smectite, quartz, hornblende, orthoclase, and bytownite — are
ubiquitous or rarely observed to be below the detection limit.

Because of the strong right-skewness of the frequency distributions for calcite and clinoptilolite,
it is difficult to determine from the linearly scaled histograms whether a significant proportion of
the XRD percentages for calcite and clinoptilolite are below the detection limit. For calcite and
clinoptilolite, a log-scale histogram (see Figure 3.9) better displays the frequency distribution,
particularly for much of the data having low XRD percentages.

Only two of the linearly scaled histograms obviously reveal multi-modal frequency distributions
— orthoclase and bytownite — having three and four apparently distinct peaks, respectively.
Distinct peaks for orthoclase are centered at about 2, 6, and 9 mass percent, and for bytownite at
about 1.5, 15, 21, and 33 mass percent. Most of the histograms show right skewness, indicating
that the frequency distributions may be closer to log-normal than normal. If the frequency
distribution is multi-modal, the question of skewness within the entire frequency distribution is
not directly applicable. Several of the minerals — dolomite, kaolinite, analcime, mordenite,
clinopyroxene, opal, tridymite, and anorthite — have zero median values, indicating that for the
majority of the samples these mineral abundances are below XRD detection limits (~0.1 mass
percent). Table 3.1 summarizes the univariate statistical analysis of the linearly scaled mineral
abundance histograms. In identifying the number of modes or “peaks” in the frequency
distributions, the *“ 4+ symbol is used to indicate “greater than or equal to.”
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Table 3.1 Summarized interpretation of univariate statistics of the linearly scaled
mineral abundance histograms.

Mean o Median # of
Mineral (mass %) (%) O/mean  (mass %) Skewness modes

Calcite 5.11 6.64 1.30 2.70 Right 1+
Hematite 0.44 0.27 0.61 0.50 ? 2
Mica 3.44 1.71 0.50 3.20 None 1
Smectite 13.81 7.54 0.54 12.20 Right 1
Clinoptilolite 9.90 11.01 1.11 4.10 Right 1+
Dolomite 0.52 2.01 3.88 0.00 ? 2+
Kaolinite 0.21 0.38 1.80 0.00 ? 2+
Analcime 0.01 0.18 12.73 0.00 ? 2
Mordenite 0.02 0.14 6.50 0.00 ? 2
Clinopyroxene 0.23 1.83 8.07 0.00 ? 2
Glass 13.11 12.18 0.93 15.00 ? 2
Cristobalite 2.88 1.95 0.68 2.50 Right 2+
Opal 0.89 2.38 2.67 0.00 ? 2+
Quartz 8.42 4.94 0.59 7.50 Right 1+
Tridymite 0.56 1.27 2.28 0.00 ? 2+
Hornblende 0.57 0.40 0.71 0.50 Right 1+
Orthoclase 7.34 2.71 0.37 7.40 ? 3+
Sanidine 3.26 2.25 0.69 2.30 ? 2+
Albite 2.95 2.37 0.80 2.90 ? 2
Bytownite 24.88 9.56 0.38 26.10 ? 4
Anorthite 0.01 0.12 12.73 0.00 ? 2
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Figure 3.6 Linearly scaled histograms of dolomite, kaolinite, analcime, mordenite, and
clinopyroxene abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-11g-1.
abundances reported as below the detection limit were included as 0% in these histograms.
Data from Warren et al. (2002).
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Figure 3.7 Linearly scaled histograms of glass, cristobalite, opal, quartz, and tridymite, and
hornblende abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-11g-1. Mineral

abundances reported as below the detection limit were included as 0% in these histograms.
Data from Warren et al. (2002).
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Figure 3.8 Linearly scaled histograms of orthoclase, sanidine, albite, bytownite, and anorthite,
and hornblende abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-1 1g-1. Mineral
abundances reported as below the detection limit were included as 0% in these histograms.
Data from Warren et al. (2002).
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3.2.1.2 Log-Scaled Histograms

Figures 3.9-3.12 show log-scaled histograms for the 21 minerals reported in the XRD analysis.
The log scaling is useful because:

e It helps span the wide variation in mineral abundances (up to 3 orders of magnitude).

¢ The mineral abundances within zones or alluvial layers tend to be log-normally
distributed.

¢ Portions of the frequency distribution that fall below the detection limit are more
clearly identified.

For most minerals, distinct sub-populations within the frequency distributions are more readily
recognized on the log scale. Peaks in the frequency distribution corresponding to values with
mineral abundances at or below the detection limit of the XRD analysis are more easily
identified. Distinct sample populations at or below the detection limit are clearly evident in
calcite and clinoptilolite histograms in Figure 3.9, which were not obvious with linear scaling in
Figure 3.5. Bi- or multi-modal distributions are more apparent on the log scale. For example,
the calcite and clinoptilolite frequency distributions appear to be composed of three or more sub-
populations in addition to the one at or below the detection limit. The frequency distributions for
glass, cristobalite, and albite appear to contain two sub-populations in addition to the sub-
population at or below the detection limit. Orthoclase and bytownite appear to contain two or
more sub-populations with the log scale. In the case of orthoclase and bytownite, which have
very low coefficients of variation of 0.37 and 0.38, respectively, the linear scaling is actually
more revealing.

The log-scaled frequency distributions generally show less skewness. In sub-populations for
data above detection limits, nearly symmetric, bell-shaped distributions are evident for hematite,
mica, smectite, quartz. In addition, the frequency distributions within bi- or multi-modal
distributions appear more symmetric, particularly for calcite, hematite, clinoptilolite, glass,
cristobalite, orthoclase, sanidine, and albite. Overall, the mineral abundance frequency
distributions are better characterized as uni-, bi-, or multi-modal log normal distributions rather
than uni-, bi- or multi-modal normal distributions. Therefore, if variability of mineralization is
to be considered in a modeling effort, assumptions of log-normal distributions within different
zones will be more plausible and justifiable for most minerals. Nonetheless, it is useful to
examine the frequency distributions with both linear and logarithmic scaling, mainly because
some minerals have narrow ranges of variability and some minerals have wide ranges of
variability.

Table 3.2 summarizes interpretation of the univariate statistics for the log-scaled histograms. In
Table 3.2, the units are scaled to logarithm of abundance as a fraction instead of percentage to
better accommodate log units. The mean, standard deviation, coefficient and median are based
only on data values above the detection limit of 0.1%. The coefficient of variation is not shown
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because it is not a viable statistic for logarithmic values. The percentage of values above the
XRD detection limit for each mineral are also given.

Compared to the univariate statistics for the linearly scaled histograms, the log-scaled histograms
exhibit consistently smaller variances and skewness. The reduction in variance is attributed not
only to the log;o units, but also the exclusion of the data below detection limits and reduction in
skewness.

Table 3.2 Summarized interpretation of univariate statistics for log-scaled mineral

abundance histograms.}
Mean Log % above
Mass detection # of
Mineral Fraction o} Median  Skewness limit modes

Calcite -1.48 046 -1.51 Small 89 1+
Hematite -2.29 0.13  -2.30 Small 79 2
Mica -1.50 0.21 -1.49 Small 98 1
Smectite -0.92 0.23 -091 Small 100 1
Clinoptilolite -1.32 0.61 -1.32 Small 98 3+
Dolomite -1.77 0.56 -2.05 ? 14 2+
Kaolinite -2.48 030 -2.52 Small 47 2+
Analcime -1.64 0.0 -1.64 ? 0.6 2
Mordenite -2.33 0.28 -2.52 ? 3.7 2
Clinopyroxene -0.97 025 -0.90 ? 1.9 2
Glass -0.72 0.19 -0.69 Small 63 2
Cristobalite -1.58 029 -1.55 Small 90 2+
Opal -1.55 0.46 -2.00 Small 21 2
Quartz -1.13 022 -1.12 Small 99 1+
Tridymite -1.87 044 -1.82 Small 20 3
Hornblende -2.34 0.31 -2.30 Small 0.71 2+
Orthoclase -1.18 0.23  -1.13 Small 100 3+
Sanidine -1.50 0.21 -1.53 Small 91 2+
Albite -1.48 025 -1.46 Small 77 2
Bytownite -0.65 0.25  -0.58 Small 99 4
Anorthite -1.80 0.0 -1.80 ? 0.6 2

TNote that values reported as below detection limit were not included in log-scaled summary statistics.
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Figure 3.9 Log-scaled histograms of calcite, hematite, mica, smectite, and clinoptilolite

abundances for XRD data from ER-5-4, ER-5-3, UE-5n, and U-11g-1. Mineral abundances

reported as below the detection limit were plotted to the left of the 0.1% value. Data from

Warren et al. (2002).
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Figure 3.10 Log-scaled histograms of dolomite, kaolinite, analcime, mordenite, and
clinopyroxene abundances for XRD data from drillholes ER-5-4, ER-5-3, UE-5n, and U-11g-1.
Mineral abundances reported as below the detection limit were plotted to the left of the 0.1%
value. Data from Warren et al. (2002).
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Figure 3.11 Log-scaled histograms of glass, cristobalite, opal, quartz, tridymite, and hornblende
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abundances for XRD data from drillholes ER-5-4, ER-5-3, UE-5n, and U-11g-1. Mineral
abundances reported as below the detection limit were plotted to the left of the 0.1% value.

Data from Warren et al. (2002).
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Figure 3.12 Log-scaled histograms of orthoclase, sanidine, albite, bytownite, and anorthite, and
hornblende abundances for XRD data from drillholes ER-5-4, ER-5-3, UE-5n, and U-11g-1.
Mineral abundances reported as below the detection limit were plotted to the left of the 0.1%
value. Data from Warren et al. (2002).
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3.2.2 Normal Probability Plots

Normal probability plots are used to compare a frequency distribution with a normal (Gaussian)
distribution. In a normal probability plot, the cumulative probability of the data is plotted on a
customized cumulative probability scale on the Y axis versus the data value on the X axis, which
may be linearly or logarithmically scaled. If the frequency distribution is normal, the cumulative
probability curve will plot along a straight line. Multiple sub-populations of normally-
distributed data may be evident from multiple linear segments.

Both linear and log scaling are useful for analyzing the mineral abundance data on a probability
plot. The linear scale may be more appropriate for minerals that exhibit small coefficients of
variation for the range of samples analyzed, such as mica. The linear scale is also useful in
accounting for mineral abundances reported as below the detection limit (plotted as 0 mass
percent here); on a log scale, these values cannot be plotted. Also, the linear scale can be more
revealing for analyzing the portion of the frequency distribution having larger values, which is
compressed by the log scale. The log scale is usually more appropriate for data that are log-
normally distributed or have a wide range of values. Also, the log scale can be more revealing
for portions of the frequency distribution having smaller values.

Interpretation of the probability plot is not always straightforward. The cumulative probability
plot may appear more curved than linear. This may be attributed to a non-normal distribution.
Depending on the shape of the frequency distribution of sub-populations within the data, either
the logarithmic or linear scale may yield a more linear cumulative distribution. The appearance
of distinct linear segments indicates multiple sub-populations. The points where change in slope
occur indicate possible cutoff values for dividing the data in sub-populations. Data near the tails
(the extreme low and high values of the distribution) are usually undersampled, and thus may
appear scattered. In general, undue attention should not be paid to the data tails.

3.2.2.1 Linearly Scaled Normal Probability Plots

Figures 3.13 to 3.16 show linearly scaled probability plots for the 21 minerals. The horizontal
scales are linearly scaled in units of percent. The range of each horizontal scale is customized to
the mineral because of the large differences in magnitude and range of mineral abundance for
different minerals.

The interpretation of the probability plots is mainly concerned with identifying portions of the
cumulative probability curve that indicate sub-populations within the data. For example, in the
probability plot for smectite shown in Figure 3.13, two linear segments are evident, with a break
in slope at about 16% smectite. Using the probability plot, the interpretation could be made that
smectite generally falls into two sub-populations where a 16% cutoff value provides a good
indication of whether a datum is more likely in a sub-population or zone of higher or lower
smectite abundance.

Another important feature of the probability plot is the portion of the data that is below the
detection limit. This appears as a vertical segment of cumulative probabilities on the far left of
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the probability plot. For example, in Figure 3.13 the cumulative distribution function for
hematite begins at the lower left by rising vertically to about 19%, which represents the portion
of data where hematite abundances are below the detection limit. An important question is
whether data which plot below the detection limit may actually represent the extreme low values
of the frequency distribution of a sub-population of data entirely above the detection limit. This
issue may be addressed by examining how the portions of the probability plot for data above and
below the detection limit merge together. If a significant change in slope can be observed which
is not a result of scatter in the tail, it is likely that much of the data below the detection limit
represents a separate sub-population of very small or zero values. Hematite, for example,
appears to exhibit a separate sub-population for values below 0.1 % because an abrupt slope
change is seen in the cumulative probability between values of hematite abundance above and
below 0.1%. On the other hand, no abrupt slope change is seen for mica abundance above and
below 0.1%. The data for mica that fall below the detection limit probably represent extremely
low values (tails) in a sub-population that falls mostly above the detection limit. Other minerals
besides hematite that appear to exhibit sub-populations with very small or zero value abundances
are calcite, clinoptilolite, dolomite, kaolinite, analcime, mordenite, clinopyroxene, glass,
cristobalite, opal, tridymite, sanidine, albite, and anorthite. Other minerals besides mica that
appear to be ubiquitous (where XRD zero values probably represent extremely low values in the
frequency distribution) are smectite, quartz, hornblende, orthoclase, and bytownite.
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Figure 3.13 Linearly scaled probability plots of cumulative abundance of sorbing minerals
calcite, hematite, mica, smectite, and clinoptilolite clinopyroxene detected by XRD analysis in
ER-5-3, ER-5-4, UE-5n, and U-11g-1.
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Figure 3.14 Linearly scaled probability plots of cumulative abundance of non-sorbing minerals
dolomite, kaolinite, analcime, mordenite, and clinopyroxene detected by XRD analysis in
ER-5-3, ER-5-4, UE-5n, and U-11g-1.
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Figure 3.15 Linearly scaled probability plots of cumulative abundance of the non-sorbing
minerals glass, cristobalite, opal, quartz, tridymite, and hornblende detected by XRD analysis in
ER-5-3, ER-5-4, UE-5n, and U-11g-1.

3-27



99.99 All XRD Data: feld Kspar_orthoclase g9.99 All XRD Data: feld_Kspar_sanidine
k) - 8 -
2 . 33
98
9% .'." 95 - P
E 90 P é‘ 90 — »
k] 80 4 80 -
¢ 2 B
PR P
2
§ 20 k- 30 y 4
32 20 2 20
§ 10 ' 3 10,
[§) 5 S 5
A o 2
1 - 1
83 83
0.01 0.01 {
0. 1.0 20 30 40 50 60 7.0 B0 90 10. 11 12 13. 14, 15 0. 1.0 20 30 40 50 60 7.0 80 9.0 10. 11. 12. 13, 14 15,
feld_Kapar_orthociase feld_Kspar_sanidine
99.99 AlLXRD Data: feld plag_albite 09.99 All XRD Data: feld_plag bytownite
88;3 - 888 -
i ] 4 -
98 7 98
95 95 2
% 9% %‘ 20 P4
80 - 80
: 3 £z -
x a )
50
2 2 2 0 .
k) % g 2
Z 20, 2 20 v
3 10 § 10 _
[3] M © 5 L
2 202
1 1
84 ] =
0.01 0.01
0. 1.0 20 30 40 50 60 70 80 90 10. 11. 12 13. 14, 15 0. 50 10. 15 20. 25 0. 35 40. 45  50.
feld_plag_albite feld_plag_bytownite

All XRD Data: feld_pla thite
99.00 AlLX ata: feld_plag anort
#1

98

95

Cumulative Probabiiity
2

0.01

0. 020 040 060 080 10 1.2 14 18 1.8 20

feid_plag_anorthite

Figure 3.16 Linearly scaled probability plots of cumulative abundance of the non-sorbing
minerals orthoclase, sanidine, albite, bytownite, anorthite detected by XRD analysis in ER-5-3,
ER-5-4, UE-5n, and U-11g-1.
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3.2.2.2 Log-Scaled Normal Probability Plots

Figures 3.17 to 3.20 show log-scaled normal probability plots of mineral abundance.
Considering that the frequency distribution of most of the sub-populations appear approximately
log-normal, a log-scaled probability plot should, in general, more clearly reveal separate sub-
populations compared to the linearly scaled probability plot. This is particularly true for calcite
and clinoptilolite, which have large ranges of mineral abundance. However, for other minerals
similar interpretations can be made from both the linearly and log-scaled probability plots. The
main exception is for identifying sub-populations with zero values (below the detection limit) —
in this case the linear scale is more revealing.
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Figure 3.17 Log-scaled probability plots of cumulative abundance of sorbing minerals calcite,
hematite, mica, smectite, and clinoptilolite clinopyroxene detected by XRD analysis in drill
drillholes ER-5-3, ER-5-4, UE-5n, and U-11g-1.
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Figure 3.18 Log-scaled probability plots of cumulative abundance of non-sorbing minerals
dolomite, kaolinite, analcime, mordenite, and clinopyroxene detected by XRD analysis in drill
drillholes ER-5-3, ER-5-4, UE-5n, and U-11g-1.
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Figure 3.19 Log-scaled probability plots of cumulative abundance of the non-sorbing minerals
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Figure 3.20 Log-scaled probability plots of cumulative abundance of the non-sorbing minerals
orthoclase, sanidine, albite, bytownite, anorthite detected by XRD analysis in drill drillholes
ER-5-3, ER-5-4, UE-5n, and U-11g-1.
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3.2.2.3 Interpretation of Normal Probability Plots

Table 3.3 summarizes the interpretation of both the linear and log-scaled probability plots.
Based on the normal probability plots with linear and log scales, the number of sub-populations
and their approximate cutoff values (bounds for different sub-populations) are identified. For
some minerals — calcite, mica, smectite, clinoptilolite, cristobalite, tridymite, hornblende,
orthoclase, albite, and bytownite — different nonzero cutoff values are identified in the linearly
and log-scaled probability plots. The differences may occur because some sub-populations in the
mineral abundances are not widely separated (for which linear scaling is more effective) or
because the mineral abundance has a wide range of variation (for which the log scaling is more
effective). For example, a bi-modal distribution is more evident for mica using linear scaling.
For quartz, the frequency distribution appears uni-modal with log scaling, but is difficult to
interpret with linear scaling. For other minerals — hematite, dolomite, analcime, mordenite,
clinopyroxene, glass, opal, sanidine, and anorthite — the interpretation of the mineral fraction of
sub-population cutoffs is generally the same for either linear or log scaling.

The right column in Table 3.3 gives the total number of sub-populations and respective cutoff
values inferred from both linearly and log-scaled probability plots. These interpretations of the
univariate statistics are intended to provide some guidance for interpreting the raw mineral
abundance data with respect to zones (or alluvial layers) having similar statistical properties. In
interpreting zones, the cutoff values do not have to be honored within each zone because there
may be overlap between the frequency distributions of different sub-populations of each mineral.
In the next section, zones are identified in the plots of mineral abundance versus depth shown in
Figures 3.1 to 3.4. The cutoff values identified in this section were used to help distinguish
zones of similar mineral abundance.
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Table 3.3 Summarized interpretation of linearly and logarithmically scaled normal
probability plots, with number of sub-populations and estimated cutoffs (in

mass %) given.

Sub-Populations:

Sub-Populations:

Sub-Populations:

Cutoffs Cutoffs Cutoffs

Mineral Linear Scaling Log Scaling Total
Calcite 3:0.0,4.0 2:16.0 4:0.0,4.0, 16.0
Hematite 2:0.0 1 2:0.0
Mica 2:45 1 2:4.5
Smectite 2:16.0 3:8.0, 16.0 3: 8.0, 16.0
Clinoptilolite 3:0.0,3.0 4:1.5,3.0,220 5:0.0,1.5,3.0,22.0
Dolomite 2:0.0 1 2:0.0
Kaolinite 3: 0.0, 0.60? 1 3:0.0 0.60?
Analcime 2:0.0 1 2:0.0
Mordenite 2:0.0 1 2:0.0
Clinopyroxene 2:0.0 1 2:0.0
Glass 3:0.0,17.0 2:17.0 3:0.0,17.0
Cristobalite 3:0.0, 3.8 2:5.0 4:0.0,3.8,5.0
Opal 2:0.0 1 2:0.0
Quartz ? 1 1
Tridymite 2:0.0 2:4.5 3:0.0,4.5
Hornblende 2:0.5 2:1.1 3:0.5, 1.1
Orthoclase 1? 2:4.8 2:4.8
Sanidine 2:3.5 2:3.5 2:3.5
Albite 3:0.0,4.0 2:3.0 4:0.0,3.0,4.0
Bytownite 2:29.0 3:11.0,29.0 3:11.0,290
Anorthite 2:0.0 1 2:0.0
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3.3 Mineralization Zones

In our geostatistical interpretation of the mineral abundance data for ER-5-3, ER-5-4, UE-5n, and
U-11g-1, a “mineralization zone” is defined as a vertical interval where the mineral abundance
data appear to fall within a sub-population characterized by a mean and variance. The purpose
of identifying the zones is to separate out the spatial variation of the mineral abundances
attributed to random processes from those related to geologic processes, such as differences in
provenance.

For this study, the identification of the zones is in part quantitative — based on identifying sub-
populations and cutoff values as described the previous section — and part subjective. The
subjective aspect involves study of the mineral abundance versus depth profiles (Figures 3.1 to
3.4) with consideration of the geologic processes involved. As indicated by Warren et al. (2002),
distinct alluvial layers can be identified from a combined interpretation of the mineralogic,
chemical, and lithologic data in ER-5-4 and UE-5n. These different alluvial layers have different
provenance. With that in mind, the alluvial layers should be evident where shifts in mean
mineral abundances occur (assuming the distribution of mean mineral abundances is indicative
of provenance).” Therefore, if the sub-populations of a mineral have overlapping frequency
distributions (e.g., smectite), the interpretations of zonal mean abundances for that mineral need
to be interpreted in the context of zonal means for other minerals. In other words, the mineral
abundance data for each mineral cannot be interpreted independently of all other minerals.
Unfortunately, it is not straightforward to perform a fully quantitative and simultaneous
interpretation of the spatial interrelationships, interdependencies, and geological tendencies of all
the mineralization zones. As mentioned earlier, the methodology used here is distinctly different
from the methods used in Warren et al. (2002). Here, we rely solely on quantitative XRD data.
The alluvial layering interpretation used in Warren et al. (2002) relies on XRD along with SEM,
XRF, microprobe and petrographic analyses. It should also be recognized that identification and
interpretation of mineralogical zones based on an alluvial layering model may be complicated by
diagenesis that may not conform to stratigraphic boundaries. While the data used to assign
layering is different, our data analysis is, in general consistent with that of Warren et al. (2002).
Section 3.5 provides comparison of these two interpretations.

Table 3.4 presents our interpretation of the number of distinct mineralization zones and zonal
mean abundances for drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1 based on our statistical
analysis of the univariate data and interpretation of the mineral vs. depth profiles. The number of
zones may include a zone composed exclusively of mineral abundance below the detection limit,
which is indicated by a zonal mean abundance of 0.0 (e.g., for calcite, hematite, dolomite,
kaolinite, analcime, mordenite, clinopyroxene, glass, cristobalite, opal, tridymite, sanidine,

albite, and anorthite.)

* This, of course, does not need to be the case. For example, it is possible that mean mineral abundances for two
alluvial layers would be identical. However, a textural or petrographic analysis might show an obvious distinction
between the two layers.
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Table 3.4 Number of mineralization zones and zonal mean abundances
interpreted from XRD data from ER-5-4, UE-5n, ER-5-3, and U-11g-1.

Mineral # of Zones Zone mean abundance (% )
Calcite 4 0.0, 2.8, 8.9, 20.6
Hematite 2 0.0, 0.55
Mica 3 1.45,3.2,6.7
Smectite 3 4.5,12.4,28
Clinoptilolite 4 0.36, 2.1, 5.9, 21
Dolomite 3 0.0, 0.89, 8.8
Kaolinite 2 0.0, 042
Analcime 2 0.0, 2.30
Mordenite 2 0.0, 0.58
Clinopyroxene 2 0.0,12.3
Glass 3 0.0, 8.3, 23
Cristobalite 3 0.0,1.61,4.3
Opal 2 0.0,3.6
Quartz 2 5.2, 117
Tridymite 3 0.0,0.78, 3.6
Hornblende 3 0.0, 0.28, 0.87
Orthoclase 2 39,83
Sanidine 4 0.0,2.8,5.9,9.6
Albite 4 0.0,2.9,6.1,8.8
Bytownite 4 3.5,144,22,32
Anorthite 2 0.0, 1.60

Depth protfiles of the zonal mean abundances are useful for identifying zones or “layers” that
could be expected to have similar radionuclide sorbing properties. The raw mineral abundance
data are more difficult to interpret because of the scatter related to random processes. Figures
3.21 to 3.24 show the same plots of mineral abundance versus depth for ER-5-4, UE-Sn, ER-5-3,
and U-11g-1 as shown in Figures 3.1 to 3.4, but with profiles of zonal mean abundance
superposed. Note that because of the log scale, the zonal mean values of 0.0 are plotted at a
value of 0.1% (the detection limit). Depth intervals where the zonal mean abundance is constant
indicate continuous intervals of similar mineral abundance. For example, in ER-5-4 the zone
mean abundances of all minerals is relatively stable between the depths of about 500 to 700 m.
Below a depth of 700 m, the zonal mean abundances of several minerals — calcite, dolomite,
cristobalite, glass, orthoclase, albite, bytownite, sanidine, quartz, tridymite, and hornblende show
an abrupt change. This represents a clear transition in the mineralogy of the alluvium, which are
identified as distinct alluvial layers by Warren et al. (2002).

In other depth intervals, the zonal mean abundances of several minerals appear to fluctuate
rapidly with depth. For example, in the depth interval between 780 to 900 m in drillhole ER-5-4,
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the zone mean abundances of nearly all minerals appear to fluctuate rapidly with depth. On
closer inspection, the fluctuation appears to occur between values of zonal mean abundances
from alluvium above 780 m depth and below 900 m depth. This would indicate that changes in
alluvial composition occur in the 780 to 900 m depth interval. In this interval, it appears that at
least two different types of alluvial sediment are interfingering.

In ER-5-3, zonal mean abundances appear relatively uniform above a depth of 200 m and below
a depth of 400 m. Between the depths of about 220 to 400 m there is much fluctuation in the
zonal mean abundances. For some minerals — hematite, mica, albite, sanidine, and bytownite
— the fluctuation occurs primarily between zonal mean abundances above 220 and below 400
m. For other minerals — calcite and the rare minerals mordenite, anorthite, and clinopyroxene
— relatively high zonal mean abundances are observed between the 220 to 400 m depth.
Smectite shows fluctuations to relatively lower zonal mean abundances between 220 to 400 m
depth. Clinoptilolite and opal show consistently higher zonal mean abundances below 220 m
depth. Tridymite is conspicuously absent below 220 m depth. Overall, the mineralogy could be
divided into three major layers in ER-5-3 based on the 220 and 400 m depths. The variation in
mineral abundances within the depths between 220 and 400 m appears to be related, in part, to
interfingering of alluvial sediments with the different provenances of the layers above 220 m and
below the 400 m. It may also suggest possible in-situ alteration, though the interpretation of
alteration is better suited to the comprehensive lithologic and petrographic characterization
performed by Warren et al. (2002).

The zonal mean abundances appear to correlate very closely between nearby drillholes —
ER-5-4 and UE-5n in central Frenchman Flat and ER-5-3 and U-11g-1 in northern Frenchman
Flat. The composition of mineralization zones or alluvial layers appears to persist laterally over
the scale of hundreds of meters, but not across the scale of 5 to 10 km between the southern and
northern testing areas of Frenchman Flat basin.
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Figure 3.21 Mineral abundance data from ER-5-4, with zonal mean abundances superposed.

Data from Warren et al. (2002).
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Figure 3.22 Mineral abundance data from UE-5n, with zonal mean abundances superposed.

Data from Warren et al. (2002).
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Figure 3.23 Mineral abundance data from ER-5-3, with zonal mean abundances superposed.
Data from Warren et al. (2002).
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Figure 3.24 Mineral abundance data from drillhole U-11g-1, with zonal mean abundances

superposed. Data from Warren et al. (2002).
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3.4 Correlations between Sorbing and Non-Sorbing Minerals

Considering that the spatial distribution of calcite, hematite, mica, smectite, and clinoptilolite
(defined as the sorbing minerals in this report) are of primary interest in application to reactive
transport modeling, three important questions may arise:

¢ Does spatial cross-correlation between different sorbing minerals exist, such that the
abundances of some sorbing minerals are dependent on the abundances of other
sorbing minerals?

e Does spatial cross-correlation between sorbing and non-sorbing minerals exist, such
that the abundances of some non-sorbing minerals are indicative of the abundances of
sorbing minerals?

e Might the correlation of abundances of different minerals be interpreted to indicate
the origin of the mineral abundances — whether by deposition or in-situ
mineralization (alteration)?

This section addresses these questions by statistical analysis of the bivariate correlation between
abundances of sorbing and other sorbing or non-sorbing minerals at the same location.

If the abundance of one mineral at a particular location does not depend on the abundance of an
other mineral at that same location, the bivariate correlation of abundances of two minerals at the
same location should not differ significantly from zero. A complete evaluation of spatial cross-
correlation of mineral abundances for different minerals would require examining the bivariate
correlation for data from different (instead of the same) locations, which is beyond the scope of
this report. Spatial auto-correlation correlation of mineral abundances is examined in Chapter 5
using variogram analyses.

The question of the origin of mineral distribution is critical to development of conceptual models
for addressing spatial variability of mineral abundance. For example, if mineral abundance can
be entirely related to provenance and alluvial fan deposition, then a depositionally-based model,
such as described by the alluvial layers identified by Warren et al. (2002), may provide an
accurate and geologically plausible conceptual model for describing much of the spatial variation
of minerals. If, however, diagenetic processes are involved, other considerations such as the role
of the thermal, hydrologic, and climatic history of the basin may need to be integrated into
development of the conceptual model.

One way to address these questions is to examine the correlation of mineral abundances of
different minerals. If the mineral abundances of two minerals are significantly correlated
(negatively or positively) then the abundance of one mineral contains information on the
abundance of the other. If the mineral abundances of two minerals are not significantly correlated,
then the mineral abundance of one mineral is, in effect, statistically independent of the other.
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Correlation of the mineral abundances of two minerals, f,; and f,,, for i=1,...,N data is
measured by the correlation coefficient p defined by:

i(fl‘i _?1Xf2.i _72)
p= = 2
\/g.(fu _fl)zg;(fz.i —?2)

where 7u and 72.,. are the mean values of the mineral fraction of minerals 1 and 2, respectively.

The statistical analysis of correlation greatly depends on the assumption that the joint probability
distribution is a binormal (two-dimensional Gaussian) distribution. In practice, a scatterplot is
used to display the joint probability distribution, where the axes are scaled by the magnitude of
the values of the two variables. If the joint probability distribution is binormal, the points on the
scatterplot will look like an oval cloud with increasing density toward the center. If the data are
positively correlated , the cloud will be elongated in a direction with positive slope. If the data
are uncorrelated ( p = 0), the cloud in the scatterplot will either have no elongation or the
elongation will be in the vertical or horizontal direction. If the data are negatively correlated, the
cloud will be elongated in a direction with negative slope. For perfect correlation of —1.0 or
+1.0, the cloud will appear as a line. Non-binormal joint probability distributions may be caused
by non-Gaussian probability distributions. Multiple sub-populations may appear as several fairly
distinct clouds in the scatterplot. We examined the correlation of both the mineral abundances
and log,o transformed mineral abundances. The log)o transformation consistently exhibited a
closer approximation to a binormal distribution.

Alternatively, “rank correlation” can be used as a robust detector of correlation, particularly for
non-Gaussian probability distributions. Rank correlation, r, is defined by

i (RU - Ri XR;,_J - E2)

r= i=1

2

B, RSk, -R)

i=1

where R,; and R, are the rank of datum i for variables 1 and 2, respectively. Rank correlation

provides a measure of the relative rank or order of the two variables that is insensitive to the
shape of the frequency distribution of either variable. Rank correlation measures the tendency
for extreme values of two variables to occur in tandem.

When evaluating the correlation of two variables, it is good practice to evaluate both pand r. It
is possible that p may appear significant as a result of outliers or deviation from a binormal



distribution. The rank correlation provides a second test; if p is significant and unaffected by
deviations from a binormal distribution, then r should also be significant.

Significance of p can be tested by evaluating the Student’s distribution, A(z,v), where

= N -2
P —p%"
N is number of data, and v=(N-2) degrees of freedom. For this study, A(r,v) was evaluated using
the FORTRAN function “betai” from Numerical Recipes (Press et al., 1992). The value of
1-A(t,v) is the significance level at which the hypothesis that correlation is actually zero is
disproved. In this application, the significance level represents an estimate of the probability that
the correlation could actually be zero, given the uncertainty of the data. If 1-A(z,v) is greater or
equal to the significance level, p 1s not significantly different than zero. Typically, a significance
level of 0.05 is assumed. The significance of r can be tested in a similar manner, where r is
substituted for p.

The final goal of this section is to determine which sorbing and non-sorbing minerals exhibit
significant correlation with the sorbing minerals. The test for “significance” in this study
requires passing of four tests:

o The absolute value of the correlation, p, must be greater than or equal to 0.250.

o The significance level of the correlation, p, for Pr{p= 0} must be less than or equal to
0.05

¢ The absolute value of rank correlation, r, must be greater than or equal to 0.250.

o The significance level of the rank correlation, r, for Pr{r=0} must be less than or
equal to 0.05

Figures 3.25 to 3.39 show the scatterplots of the mineral abundance data. The log; fractions of
the dependent variables, the sorbing minerals — calcite, hematite, mica, smectite, and
clinoptilolite — are scaled on the Y axis, and the log;o fractions of the independent variable,
whether a sorbing or non-sorbing mineral, are scaled on the X axis. A list of important statistics
are given on the right of each scatterplot, including:

e number of data evaluated and plotted (above the detection limit),
e number trimmed (below the detection limit),
¢ the mean and standard deviation of the X and Y variables in log;g units,

¢ the correlation and its significance level (probability that the correlation equals 0.0),
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e the rank correlation and its significance level (probability that the rank correlation
equals 0.0).

Tables 3.5 to 3.9 summarize the statistics (based on log;o mineral abundance) used to evaluate
the significance of correlation between sorbing minerals and other sorbing or non-sorbing
minerals.

Table 3.5 Correlation statistics used to determine magnitude and significance of
correlation between calcite and other sorbing or non-sorbing minerals.

Mineral Pair Significant
Y variable X variable p Pr(p=0) r Pr(r=0) Correlation?
Calcite Hematite -0.240 0.008 -0.190 0.038 No
Calcite Mica -0.068 0.408 -0.155 0.060 No
Calcite Smectite 0.129 0.118 0.079 0.340 No
Calcite Clinoptilolite 0.264 0.001 0.317 0.000 Yes
Calcite Dolomite 0.563 0.003 0.537 0.007 Yes
Calcite Kaolinite 0.153 0.195 0.255 0.028 No
Calcite Glass -0.139 0.176  -0.063 0.541 No
Calcite Cristobalite -0.308 0.000 -0.333 0.000 Yes
Calcite Opal -0.271 0.135 -0.463 0.006 No
Calcite Quartz 0471 0.000 0.464 0.000 Yes
Calcite Tridymite 0.035 0.810 -0.013 0.928 No
Calcite Hornblende -0.333 0.000 -0.373 0.000 Yes
Calcite Orthoclase -0.506 0.000 -0.434 0.000 Yes
Calcite Sanidine 0.021 0.812 0.041 0.638 No
Calcite Albite -0.194 0.039 -0.129 0.175 No
Calcite Bytownite -0.642  0.000 -0.706 0.000 Yes
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Table 3.6 Correlation statistics used to determine magnitude and significance of
correlation between hematite and other sorbing or non-sorbing minerals.

Mineral Pair Significant
Y variable X Variable P Pr(p=0) r Pr(r=0) Correlation?
Hematite Calcite -0.240 0.008 -0.190 0.110 No
Hematite Mica -0.040 0.651  0.012 0.888 No
Hematite Smectite 0.042 0.631 0.121 0.170 No
Hematite Clinoptilolite -0.158 0.073 -0.137 0.123 No
Hematite Dolomite 0.381 0.184 0.495 0.072 No
Hematite Kaolinite 0.117 0.182 0.270 0.002 No
Hematite Glass -0.060 0.554 0.222 0.027 No
Hematite Cristobalite 0.175 0.049 0.189 0.033 No
Hematite Opal 0.045 0.882  0.002 0.994 No
Hematite Quartz -0.226 0.010 -0.096 0.279 No
Hematite Tridymite 0.208 0.139  -0.001 0.993 No
Hematite Hornblende 0.024 0.790 0.016 0.856 No
Hematite Orthoclase 0.117 0.182 0.270 0.002 No
Hematite Sanidine 0.013 0.886  0.066 0.479 No
Hematite Albite 0.018 0.865 0.077 0.458 No
Hematite Bytownite 0.142  0.106  0.230 0.008 No

Table 3.7 Correlation statistics used to determine magnitude and significance of
correlation between mica and other sorbing or non-sorbing minerals.

Mineral Pair Significant
Y variable X variable Yo Pr(p=0) r Pr(r=0) Correlation?
Mica Calcite -0.068 0.408 -0.151 0.065 No
Mica Hematite -0.040 0.651 -0.081 0.351 No
Mica Smectite 0.193 0014 0.164 0.038 No
Mica Clinoptilolite -0.116 0.144 -0.205 0.010 No
Mica Dolomite 0.000 0.998 0.051 0.812 No
Mica Kaolinite 0.025 0.829 -0.056 0.626 No
Mica Glass -0.143 0.150 -0.131 0.188 No
Mica Cristobalite 0.020 0.809 0.072 0.375 No
Mica Opal -0.052 0.763 0011 0.948 No
Mica Quartz -0.258 0.001 -0.347 0.000 Yes
Mica Tridymite -0.08 0.900 0.052 0.715 No
Mica Hornblende 0.469 0.000 0.511 0.000 Yes
Mica Orthoclase 0.062 0.431 0.103 0.191 No
Mica Sanidine -0.115 0.164 -0.135 0.103 No
Mica Albite -0.170 0.056 -0.191 0.032 No
Mica Bytownite 0.253 0.001 0.428 0.000 Yes
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Table 3.8 Correlation statistics used to determine magnitude and significance of
correlation between smectite and other sorbing or non-sorbing minerals.

Mineral Pair Significant
Y variable X Variable P Pr(p=0) r Pr(r=0) Correlation?
Smectite Calcite 0.129 0.118 0.076 0.355 No
Smectite Hematite 0.042 0.631 0.094 0.283 No
Smectite Mica 0.193  0.014 0.166 0.035 ‘No
Smectite Clinoptilolite -0.395 0.000 -0.443 0.000 Yes
Smectite Dolomite 0.794 0.000 0.807 0.000 Yes
Smectite Kaolinite 0.150 0.191  0.231 0.042 No
Smectite Glass 0.014 0.886 -0.052 0.604 No
Smectite Cristobalite 0.072 0.382 0.141 0.083 No
Smectite Opal -0.494 0.002 -0.503 0.002 Yes
Smectite Quartz -0.094 0.235 -0.190 0.016 No
Smectite Tridymite -0.590 0.000 -0.531 0.000 Yes
Smectite Hornblende 0.152 0.060 0.140 0.083 No
Smectite Orthoclase -0.404 0.000 -0.223 0.004 No
Smectite Sanidine -0.282 0.000 -0.175 0.034 No
Smectite Albite -0.344 0.000 -0.274 0.002 Yes
Smectite Bytownite -0.318 0.000 0.064 0.417 No

Table 3.9 Correlation statistics used to determine magnitude and significance of
correlation between clinoptilolite and other sorbing or non-sorbing minerals.

Mineral Pair

Significant

Y variable X Variable P Pr(p=0) r Pr(r=0) Correlation?
Clinoptilolite Calcite 0.264 0.001 0.317 0.000 Yes
Clinoptilolite Hematite -0.158  0.073  -0.177 0.045 No
Clinoptilolite Mica -0.116  0.144 -0.206 0.009 No
Clinoptilolite Smectite -0.395  0.000 -0.447 0.000 Yes
Clinoptilolite Dolomite -0.303  0.162 -0.401 0.058 No
Clinoptilolite Kaolinite 0.144 0.214 0.198 0.087 No
Clinoptilolite  Glass -0.388  0.000 -0.340 0.000 Yes
Clinoptilolite  Cristobalite -0.449  0.000 -0.468 0.000 Yes
Clinoptilolite Opal -0.072  0.677 -0.080 0.643 No
Clinoptilolite  Quartz 0.492 0.000 0.567 0.000 Yes
Clinoptilolite  Tridymite 0.342 0.013 0.248 0.077 No
Clinoptilolite Hornblende -0.313  0.000 -0.312 0.000 Yes
Clinoptilolite ~ Orthoclase -0.103  0.196 -0.182 0.022 No
Clinoptilolite  Sanidine 0.106 0.206 0.132 0.114 No
Clinoptilolite  Albite 0.086 0.347 0.118 0.193 No
Clinoptilolite Bytownite -0.212  0.007  -0.381 0.000 No
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Table 3.10 summarizes the type of correlation — exactly positive (1), not significant (0), positive
(+), or negative (-) — between sorbing minerals and other sorbing or non-sorbing minerals. The
autocorrelations (correlations between the same mineral) are exactly +1.0. Based on Table 3.10,
several conclusions on the correlation of mineral abundances can be made:

e Only one sorbing mineral, clinoptilolite, shows significant correlation with other
sorbing minerals — calcite (positive) and smectite (negative).

e The sorbing mineral hematite is not significantly correlated with any other minerals,
either sorbing or non-sorbing.

e Of the non-sorbing minerals that are sufficiently abundant to test for correlation, only
two, kaolinite and sanidine, show no significant correlation with any sorbing
minerals.

e None of the non-sorbing minerals show significant correlation with all sorbing
minerals.

e Two non-sorbing minerals show significant correlation with the same three sorbing
minerals — quartz and hornblende (to calcite, mica, and clinoptilolite). Four non-
sorbing minerals show significant correlation with two sorbing minerals — dolomite
(to calcite and smectite), cristobalite (to calcite and clinoptilolite), and bytownite (to
calcite and mica). Four non-sorbing minerals show significant correlation to one
sorbing mineral — glass (to clinoptilolite), tridymite (to smectite), orthoclase (to
calcite), and albite (to smectite).

For some of these correlations, a geologic and/or geochemical significance can be applied. For
example, the negative correlation between calcite and bytownite suggests that calcite may have
formed as a result of weathering of the Ca-rich plagioclase. However, these correlations between
minerals are rather subtle, are difficult to explain based solely on XRD information, and
therefore, benefit when evaluated in conjunction with other supportive evidence. Furthermore,
lithologic characterization of alluvium from the ER-5-4 central Frenchman Flat well in Warren et
al. (2002) suggests that secondary minerals are not formed in-situ but are instead a part of the
original mineralogy of the sediments. Thus, geochemical interpretation of sediment alteration
history at this location reflects the alteration history of the alluvium-forming precursor and not
in-situ post-depositional alteration processes. Lithologic data for northern Frenchman Flat wells
(primarily ER-5-3) is limited but suggests possible in-situ secondary alteration. The complex
history of the sediments and their alteration can best be deciphered using a combination of
lithologic and petrographic, XRD, SEM, XRF, and microprobe analyses. The results presented
here suggest that correlations between minerals exist but the correlations cannot be rigorously
interpreted without a combination of XRD and other techniques.
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Table 3.10 Summary of types of correlation — exactly positive (1), not significant (blank),
positive (+), and negative (-) — between sorbing minerals and sorbing or non-sorbing
minerals.

Type of Correlation with sorbing minerals: Any
Significant
Mineral Calcite Hematite Mica Smectite Clinoptilolite Correlation?

Calcite 1 + Yes
Hematite 1 No
Mica 1 No
Smectite 1 - Yes
Clinoptilolite + - 1 Yes
Dolomite + + Yes
Kaolinite No
Glass - Yes
Cristobalite - - Yes
Opal - Yes
Quartz + - + Yes
Tridymite - Yes
Hornblende - + - Yes
Orthoclase - Yes
Sanidine No
Albite - Yes
Bytownite - + Yes
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Figure 3.25 Scatterplots evaluating bivariate correlation between calcite and the sorbing
minerals hematite, mica, smectite, and clinoptilolite.
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Figure 3.26 Scatterplots evaluating bivariate correlation between hematite and the sorbing
minerals calcite, mica, smectite, and clinoptilolite.
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Figure 3.27 Scatterplots evaluating bivariate correlation between mica and the sorbing minerals
calcite, hematite, smectite, and clinoptilolite.
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Figure 3.28 Scatterplots evaluating bivariate correlation between smectite and the sorbing
minerals calcite, hematite, mica, and clinoptilolite.
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Figure 3.29 Scatterplots evaluating bivariate correlation between clinoptilolite and the sorbing
minerals calcite, hematite, mica, and smectite.
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Figure 3.30 Scatterplots evaluating bivariate correlation between calcite and the non-sorbing
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Figure 3.31 Scatterplots evaluating bivariate correlation between calcite and the non-sorbing
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minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite.
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Figure 3.32 Scatterplots evaluating bivariate correlation between hematite and the non-sorbing
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Figure 3.33 Scatterplots evaluating bivariate correlation between hematite and the non-sorbing
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite.
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Figure 3.34 Scatterplots evaluating bivariate correlation between mica and the non-sorbing
minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz.
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Figure 3.35 Scatterplots evaluating bivariate correlation between mica and the non-sorbing
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite.
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Figure 3.36 Scatterplots evaluating bivariate correl

ation between smectite and the non-sorbing

minerals dolomite, kaolinite, glass, cristobalite, opal, and quartz.
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Figure 3.37 Scatterplots evaluating bivariate correlation between smectite and the non-sorbing
minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite.
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Figure 3.39 Scatterplots evaluating bivariate correlation between clinoptilolite and the non-
sorbing minerals tridymite, hornblende, orthoclase, sanidine, albite, and bytownite.

3-65



3.5 Comparison of Chemofacies with Alluvial Layering

Based on mineralogic, chemical, and lithologic information, Warren et al. (2002) identified
several alluvial layers in ER-5-4 and UE-5n. A description of alluvial layering in Frenchman
Flat may provide a suitable framework for developing three-dimensional models of hydraulic
and reactive transport properties. To explore this possibility, we compare our interpretations of
the zonal mean abundances of sorbing minerals with the interpretations of alluvial layering.

We identify “chemofacies” as vertical intervals or zones of alluvium having similar distributions
of zonal mean abundances for all sorbing minerals — calcite, hematite, mica, smectite, and
clinoptilolite. Within a chemofacies, the statistical properties of all five mineral abundances
appear stationary. Our chemofacies interpretations do not include lithologic interpretations, such
as consideration of texture, mode of deposition, or elemental analysis of typically mobile or
immobile elements as considered by Warren et al. (2002). Our chemofacies interpretations are
strictly concerned with identifying zones of similar distributions of zonal mean abundances of
sorbing minerals and, therefore, are bound to differ from the more geologically comprehensive
interpretation of alluvial layering.

Another potential source of uncertainty in comparing the chemofacies and alluvial layering
interpretations is raised by the analysis of multiple samples or “splits” obtained from the same
core. While one split was used to produce XRD data, other splits were used to produce SEM and
other data, as described by Warren et al. (2002, Section 3.1.2.3). Despite being located only a
few centimeters apart, the data indicate that split samples within the same core may yield
significantly different mineral concentrations. Having only a limited number of XRD data for
sample splits (1 duplicate and 3 triplicate splits), our geostatistical analysis cannot evaluate
small-scale or “microscale” variability at the scale of centimeters or less. Furthermore, since
only XRD data were used in the geostatistical analysis, we could not evaluate how different
methods of analysis (e.g. SEM data) could affect sorbing mineral abundance results. The
geostatistical analysis in Chapter 5 indicates that significant spatial variability typically exists
within a scale of about 0.3 m, which is the smallest core sample spacing. Therefore, it would not
be surprising if, in actuality, the microscale variability of mineral concentrations in Frenchman
Flat alluvium is relevant over scales less than a few centimeters. In future HST or CAU scale
modeling, it will be important to recognize the uncertainty in identifying chemofacies or alluvial
layers based on analysis of a few or sparse samples. Microscale variability and, possibly,
uncertainty in the methods of analysis themselves may cause considerable uncertainty in
identifying zones with similar mineral concentrations.

For the purpose of radionuclide transport modeling at HST or CAU scales, it will be important to
recognize the potential for differences between interpretations based on alluvial layering and
interpretations based on zones with different capacities to attenuate or sorb radionuclides. For
example, if an alluvial layer corresponds to a package of alluvial sedimentation, there may be
gradations of texture and mineral composition related to the evolution of alluvial deposition over
time. Alluvial fans are composite features created by episodic accumulation of sediments.
However, alluvial fans do exhibit systematic depositional patterns. Alluvial fans tend to fine
outwards and may coarsen or fine upwards. Alluvial fans may consist of different depositional
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facies such as sheetflood, debris flow, channel and sieve deposits. Playa deposits also occur in
Frenchman Flat. As a result of a depositional hiatus, caliche layers may occur at the top of a
package of alluvial sedimentation. Thus, different modes of deposition, various sorting
mechanisms, and in situ alteration may complicate the spatial distribution of minerals within an
alluvial layer. On the other hand, two different alluvial layers may possess very similar
abundances of the sorbing minerals, such that two different alluvial layers could be categorized
as the same chemofacies.

Figures 3.40 and 3.41 superpose zonal mean abundances interpreted for ER-5-4 and UE-5n (as
shown in Figures 3.21 and 3.22) on the alluvial layering interpretation from Warren et al. (2002).
Each mineral possesses a set of different zonal mean abundances, which were interpreted from
the depth profiles of mineral abundance (Figures 3.21 to 3.24) and the univariate statistical
analyses described in sections 3.1 to section 3.3 and summarized in Tables 3.3 and 3.4. In
Figures 3.40 and 3.41, zonal mean abundances for non-sorbing minerals that exhibit significant
correlation with at least one sorbing mineral, as indicated by Table 3.10 in section 3.4, are also
shown to help identify chemofacies.

In Figure 3.40, the boundaries of alluvial layers for ER-5-4 correspond with many of the abrupt
shifts in mean abundances of sorbing minerals. Starting from the top, the vertical interval for
layer 1 is not identified in this study because no XRD data were obtained there. A large increase
in clinoptilolite abundance distinguishes layers 3, 4 and 5 from layer 2. Lower calcite abundance
is evident at the base of layer 5. Layers 6, 7, and 8 exhibit lower clinoptilolite abundance.
Smectite abundance appears to increase below the middle of layer 7 down through layers 8 and
9a-c. In layer 9a, clinoptilolite abundance rises slightly, and calcite abundance is very high.
Hematite abundance distinctively drops between depths of about 760 and 780 m within layer 9a.
With respect to non-sorbing minerals, layer 9a is clearly distinguished from layers 6, 7, and 8 by
abrupt decreases in cristobalite, tridymite, hornblende, and orthoclase abundances and increases
in albite, dolomite, and quartz. Between depths of 780 to 900 m, layers 9a-c are interfingered,
which is evident by large fluctuations in the zonal mean abundances. Layers 10 and 12 appear
similar in both sorbing and non-sorbing mineral abundance, with lower smectite and distinctively
low clinoptilolite abundance. Layer 11 has similar sorbing mineral abundances to layers 10 and
12, except that clinoptilolite abundance is very high.

Warren et al. (2002) interpreted a similar sequence of alluvial layers in UE-5n to a depth of about
480 m. Figure 3.41 shows zonal mean abundances of sorbing and correlated non-sorbing
minerals superposed on the alluvial layers. The alluvial layers are deeper in UE-5n and show
some variations in thickness compared to ER-5-4. In UE-5n, layer 4 is either absent or
unresolved. The comparison between ER-5-4 and UE-5n, though limited by the limited number
and depth range of samples from UE-5n, indicates that the alluvial layers exhibit significant
lateral spatial continuity, on the scale of at least hundreds of meters. Additionally, variations in
thickness and attitude (e.g., dip and strike of bounding surfaces) of the alluvial layers may need
to be considered in both HST and CAU scale models.
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Figure 3.40 Zonal mean abundance of sorbing and correlated non-sorbing minerals in ER-5-4
superposed on alluvial layers proposed in Warren et al. (2002).
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Figure 3.41 Zonal mean abundance of sorbing and correlated non-sorbing minerals in UE-5n
superposed on alluvial layers proposed in Warren et al. (2002).

For comparison to the alluvial layering interpretations, Figures 3.42 and 3.43 show our
chemofacies interpretations for ER-5-4 and UE-5n. The chemofacies appear as vertical zones
with distinctive sets of zonal mean abundances of sorbing minerals. Only the depth profiles of
the zonal mean abundances of sorbing minerals are shown because these data distinguish
different chemofacies. The legends in both Figures 3.42 and 3.43 provide a depth-ordered
profile of the chemofacies. Some chemofacies may repeat at different depth intervals —
chemofacies 1 and 2, or example, in ER-5-4.

Table 3.11 summarizes a comparison between the chemofacies interpretations and the alluvial
layers identified by Warren et al. (2002). Compared to the alluvial layers, chemofacies 1
corresponds to layers 2 and 6 and the upper portion of layer 7. Chemofacies 2 corresponds to
layer 3, and chemofacies 3 corresponds to layer 5. A distinctive chemofacies is not associated
with layer 4. Chemofacies 4, distinguished from chemofacies 1 by low calcite, occurs between
depths of about 380 to 400 m at the base of layer 6. Chemofacies 5, distinguished by higher
smectite relative to chemofacies 1, spans layer 8 and the lower portion of layer 7. Chemofacies
6, distinguished from chemofacies 5 by high calcite, occurs in a thin zone at the top of
chemofacies 5 near a depth of 500 m. Chemofacies 6 also corresponds with layer 9a, except
between a depth of 760 and 780 m, where chemofacies 7 is distinguished by lack of hematite.
Between the depths of 780 to 900 m, a transition zone consisting of a mixture of chemofacies 6,
7, and 8 is apparent, which corresponds to the interfingering of layers 9a, 9b, and 9c. However,
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chemofacies 8 continues below a depth 900 m, corresponding to layers 10 and 12, except where
another occurrence of chemofacies 2 (having high clinoptilolite abundance) corresponds to
layer 11.

Table 3.11 Summary of chemofacies interpretation in ER-5-4, with comparison to alluvial
layers identified by Warren et al. (2002).

Chemofacies Depth Range(s) in ER-5-4 Alluvial Layer(s) Distinctive Features

1 190-233; 345-380; 400-500 2, 6, 7 (upper) Lower smectite

2 310-330; 1000-1030 3,11 High clinoptilolite

3 330-345 5 Like 2, but low calcite

4 380-400 6 (base) Like 1, but low calcite

5 510-700 7 (lower), 8 Higher smectite

6 500-510; 700-760 5 (top), 9a (upper) Like 5, but high calcite

7 760-780 9a (lower) Like 6, but no hematite
6,7,8 780-900 9a, 9b, 9¢

(interfingering)
8 900-1000; 1030-1132 10, 12 Like 1, but low clinoptilolite

Overall, much of the alluvial layering interpretation of Warren et al. (2002) in ER-5-4
corresponds with our chemofacies interpretations. The differences can be attributed to

¢ layers that do not appear to have distinctive abundances of sorbing minerals (e.g.,
layer 4 and layer 8),

¢ chemofacies that compose sub-units within alluvial layers (e.g., chemofacies 6 within
layer 7 and chemofacies 7 within layer 9a),

¢ layers that have similar sorbing mineral abundances (e.g., layers 10 and 12 or layer 2
and the upper portions of layers 6 and 7), and

e combinations of the above.

The chemofacies interpretation for UE-5n shows a similar depth profile as for ER-5-4. A
transition zone between chemofacies 1 and chemofacies 2 may be occurring near depths of 290
to 300 m, but only two XRD data are available in this depth range. Chemofacies 4, which does
not correspond directly to an alluvial layer, also appears in UE-Sn, indicating that this thin zone
of low calcite abundance could be laterally extensive.
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Figure 3.42 Zonal mean abundance of sorbing minerals in ER-5-4 superposed on distinctive
chemofacies zones interpreted in this report.
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Figure 3.43 Zonal mean abundance of sorbing minerals in UE-5n superposed on distinctive
chemofacies zones interpreted in this report.

The chemofacies interpretations were extended to ER-5-3 and U-11g-1 in northern Frenchman
Flat. Of the chemofacies identified in ER-5-4, only chemofacies 1 was found to be applicable to
ER-5-3 between depths of about 90 to 200 m. This indicates that portions of the upper alluvium
in both central and northern Frenchman flat are very similar with respect to capacity for sorbing
radionuclides, but significantly different at greater depths. Between depths of about 200 m to
greater than 610 m, clinoptilolite abundance is consistently high in ER-5-3 relative to ER-5-4.
Chemofacies 9 is similar to chemofacies 2 in ER-5-4, except that chemofacies 9 exhibits lower
mica and smectite abundance. Chemofacies 12 is similar to chemofacies 9 except that it exhibits
lower hematite and higher smectite. Chemofacies 10 and 11 show some similarities to
chemofacies 7 in ER-5-4, having low hematite and relatively high calcite and clinoptilolite. It is
possible that these differences could be attributed to lateral gradations within the sequence of
alluvial deposition. Between depths of about 225 and 360 m in ER-5-3, zonal mean abundances
of sorbing minerals vary substantially, indicating a transition zone between chemofacies 1, 9, 10,

11, and 12. The three samples from U-11g-1 appear to fall into this transition zone, as indicated
in Figure 3.45.
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Figure 3.44 Zonal mean abundance of sorbing minerals in ER-5-3 superposed on
distinctive chemofacies zones interpreted in this report.
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Figure 3.45 Zonal mean abundance of sorbing minerals in U-11g-1 superposed on
distinctive chemofacies zones interpreted in this report.
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In general, the more detailed and comprehensive analysis of Warren et al. (2002) focused on
identifying distinct packages of alluvial deposits. Our analysis relied solely on mineralogy data
provided by XRD. Our chemofacies interpretations did not consider all geologic data available
because its purpose was to interpret geochemical factors affecting radionuclide reactive
transport — principally, the abundance of 5 sorbing minerals included in our mechanistic model.
While the interpretation of alluvial layers by Warren et al. (2002) is better suited to define
provenance and stratigraphy, our statistical analysis of mineral abundance is focused on
understanding the role that mineral distributions play on radionuclide sorption. The important
conclusions are:

e Interpretations of alluvial layering, as performed by Warren et al. (2002), could
provide a useful geometric framework for modeling major spatial variations in the
abundances of radionuclide-sorbing minerals.

e Some zones or sub-units within the alluvial layers may need to be distinguished for
purposes of reactive transport modeling based on distinctive differences in
abundances of sorbing minerals.

e Some alluvial layers may possess effectively the same distribution of zonal mean
abundances of sorbing minerals. Unless bulk density and porosity are significantly
different, it may be plausible to use the same retardation factors for different alluvial
layers of the same chemofacies in CAU or HST scale particle-tracking transport
simulations.

e In some sections of the alluvial sequence, complex interfingering of different
lithologies occurs, resulting in large fluctuations in abundances of sorbing minerals.
These “transition zones” are bound to be heterogeneous in both hydraulic and reactive
transport properties. For HST models, it may be essential to consider such
heterogeneity if radionuclide transport is expected to occur there.

e In developing CAU scale three-dimensional models, with or without consideration of
interpretations of alluvial layers or chemofacies, some consideration for lateral
gradations of sorbing mineral abundances should be included.

e The chemofacies interpretations we have made are intended to provide an illustrative
example for identifying zones with distinctive abundances of sorbing minerals within
the alluvium in Frenchman Flat. Certainly different interpretations of lesser or
greater detail could be made.
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4 Sorption Modeling and Estimating Ky

Our evaluation of mineral abundance discussed in Chapter 3 provides an overall description of
mineralogic heterogeneity in Frenchman Flat alluvium. The mineralogic information can be
used to evaluate depositional patterns within alluvium. Moreover, the data may also assist in
developing a framework for understanding the lateral and vertical continuity of depositionally
and mineralogically distinct zones or layers which may have unique radionuclide transport
characteristics. We define the description of zones or layers based on spatial distribution of
sorbing mineral abundances as a chemofacies approach. Warren et al. (2002) used mineral
abundance information along with petrographic and other information to describe alluvial
layering. In Section 3.5, we compared the alluvial layer interpretations in ER-5-4 and UE-5n to
our interpretations of chemofacies which were based entirely on abundances of radionuclide
sorbing minerals.

In this chapter, we evaluate the same mineral abundance data from a radionuclide retardation
perspective instead of a mineralogic perspective. The distribution coefficient (K;) can be used to
account for retardation of radionuclide transport in conjunction with either of two conceptual
approaches to modeling spatial variability of K; discussed in Chapters S and 6:

e Combine chemofacies and alluvial layering interpretations to define zones with
relatively constant mineral abundances and Ky — the chemofacies approach.

o Treat K;as a random field — the random field approach.

In a reactive transport modeling approach assuming zonal spatial variation of sorbing minerals,
either mechanistic or K; approaches may be used to simulate retardation of radionuclide
transport. In this chapter, we discuss the mechanistic approach only as it relates to the
calculation of Ks.

Regardless of its ultimate use, the method used to convert abundances of radionuclide sorbing
minerals to Kys is the same. The discussion of K variability in this chapter parallels the
mineralogic discussion in Chapter 3; we discuss only univariate and bivariate statistics as a
preliminary step to performing variogram analysis of spatial variability of K;. The results of the
variogram analyses in Chapter 5 are applied to generation of random fields of K, in Chapter 6.

In a recent report, Zavarin (2002) proposed linking radionuclide K;s used in large-scale CAU
models (the K, approach) to a mechanistic surface complexation/ion exchange radionuclide
sorption model (the mechanistic approach).® The mechanistic sorption model was developed for
near-field hydrologic source term (HST) modeling of reactive transport (most recently used in
Pawloski et al., 2001). The mechanistic sorption model accounts for effects such as changing

® For the link to be valid, the following assumptions need to be made: constant groundwater solution composition,
constant temperature, constant pH, constant groundwater redox state, constant mineralogy, and radionuclide
concentrations well below concentrations at which non-linear sorption and/or radionuclide precipitation would be
expected.
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groundwater conditions on radionuclide sorption to mineral surfaces. As such, it provides a
robust description of radionuclide sorption. The benefits of linking the large-scale CAU model
K, approach to the mechanistic approach are the following:

e Ks used in large-scale models would be based on a technically defensible
mechanistic sorption model, and

e K used in large-scale models would be directly linked to the mechanistic sorption
model used in near-field HST models.

Several recent reports describe the mechanistic sorption model used in near-field HST
calculations (Zavarin and Bruton, 2000a; 2000b), employ the mechanistic sorption model in
near-field HST calculations (Pawloski et al., 2001), validate the mechanistic sorption model
parameters (Zavarin et al., 2002), and describe how one may link Ks to the mechanistic sorption
model (Zavarin, 2002). These topics will not be repeated here but a brief description of the
methods used to develop Kys follows.

4.1 Mechanistic Sorption Model-based Kys
4.1.1 Radionuclide Species and Radionuclide-Sorbing Minerals

At present, the mechanistic sorption model used in near-field HST calculations includes Am, Ca,
Cs, Sr, Eu, Sm, Np, Py, and U radionuclides’ and iron oxide, smectite, zeolite, illite, and calcite
minerals (Table 4.1). While this database is quite substantial, there are limitations to it. The
completeness of the radionuclide list is dependent on the radiologic source term being evaluated.
For example, a recent near-field HST modeling report (Pawloski et al., 2001) included the
following radionuclides as pertinent to the Pahute Mesa HST: *H, C, *Cl, *Ar, *'Ca, **N;,
85Ky 905y, 937r, 9394Np, P¥Tc, 107pq, 121126gy 129 135137 151Gy (150.152154p,, 166py,

22233234 235236.238y 237N, 238239.240241py MAm and 24Cm. OF those, °H, C, CL, ®Ar, ®Kr,
*Tc, and '"*°T were modeled as tracers because they were not expected to sorb strongly to any
minerals in NTS Agroundwater. 4lCy, Mgy, 35137 0g 151Gy 150152154, 232233.234235.236.2381 )
2INp, 288392402 py and *'Am sorption was modeled based on the mechanistic sorption model.
The behavior of '*Ho, and ***Cm was based on the behavior of Eu since these trivalent cations
are expected to have similar chemistry. However, **%Ni, **Zr, ®***Nb, '’Pd, and '*'**Sn could
not be modeled correctly because their behavior was not included in the mechanistic model.
These radionuclides are missing from the mechanistic model due to a combination of data
limitations and mechanistic sorption model development time constraints. Evaluation of their
sorption behavior should be included in future versions of the mechanistic sorption model.

" Note that radionuclide isotopes of the same element are assumed to behave identically. The mechanistic model
does not distinguish between isotopes of a particular element.
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An additional missing aspect of the mechanistic sorption model is the absence of manganese
oxide radionuclide sorbing minerals. Manganese oxides can be strong radionuclide sorbers
(Duff et al., 1999). However, Frenchman Flat alluvium data suggest that manganese oxides are
not present in significant abundance (see Warren et al., 2002). While the absence of manganese
oxides in the mechanistic sorption model may be an issue for areas of the NTS where manganese
oxides are prevalent (i.e. fracture coatings in certain Pahute Mesa locations), it is not a
significant issue for Frenchman Flat alluvium.

The aluminosilicate mineralogy of Frenchman Flat alluvium is composed of a large number of
heterogeneously distributed minerals and glasses (e.g. K-feldspar, plagioclase, glass, cristobalite,
opal, quartz, tridymite, hornblende, kaolinite, zeolite, mica, smectite). However, the mechanistic
sorption model accounts for only smectite, mica, and a zeolite (clinoptilolite). While the other
aluminosilicate minerals may contribute to radionuclide surface complexation or ion exchange to
some degree, it is likely that the aluminosilicate minerals included in our model are the dominant
aluminosilicate radionuclide sorbers. For example, the ion exchange capacity of zeolite, mica,
and smectite far outweighs the ion exchange capacity of kaolinite (the only other significant ion
exchanger in Frenchman Flat alluvium). Furthermore, the very high surface area of smectite is
likely to result in its dominance over all other aluminosilicate minerals with respect to surface
complexation. This is consistent with our recent measurements of BET surface area of alluvium
from UE-5n and U-1a which suggest that the surface area of smectite dominates the total
alluvium BET surface area (unpublished data).

Table 4.1 Surface complexation (SC) and ion exchange (IE) reactions included in the
mechanistic sorption model.

Zeolite Illite/mica Smectite Iron oxide Calcite

Ca IE IE IE - SC
Cs IE [E IE -

Sr IE [E IE SC SC
Am - - SC SC SC
Eu - - SC SC SC
Sm - . scl sct SC
Np - - SC SC SC
U - - SC SC SC
Pu - - SC SC SC

¥ Samarium sorption to smectite and iron oxide was estimated based on analogy to europium because
published sorption data were not available.

4.1.2 Radionuclide-Mineral Kss

In the mechanistic sorption model, radionuclide sorption is a function of the fluid composition,
the sorbing mineral properties (cation exchange capacity, surface area, reactive site density), and
the surface complexation/ion exchange constants that govern radionuclide sorption affinities. To
predict radionuclide sorption, all these factors must be evaluated. The fluid composition for
Frenchman Flat alluvium was based on Rose et al. (1997) and additional unpublished LLNL
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groundwater analyses from various wells located in Frenchman Flat alluvium (average reported
in Table 4.2). Speciation of radionuclides in Frenchman Flat groundwater was accomplished
using the GEMBOCHS database (Johnson and Lundeen, 1989) with revisions as noted in
Zavarin and Bruton (2000a; 2000b). The sorbing mineral properties were based on published
data and our recent model validation experiments performed on Yucca Flat and Frenchman Flat
alluvium (Zavarin et al., 2002). These experiments indicated that published surface areas and
cation exchange capacities may be too high for certain minerals. The reduced reactive surface
areas and cation exchange capacities may relate to mineral accessibility issues which are not
accounted for directly in this report. However, the adjustment of surface areas and cation
exchange capacities based on validation experiments indirectly (and qualitatively) accounts for
the effect of mineral accessibility on radionuclide sorption. The surface complexation/ion
exchange constants that govern radionuclide sorption affinities were developed based on non-
electrostatic surface complexation and Vanselow ion exchange (Zavarin and Bruton, 2000a;
2000b). Model validation experiments performed on Yucca Flat and Frenchman Flat alluvium
(Zavarin et al., 2002) indicated that some ion exchange constant adjustment is necessary to
accurately predict radionuclide sorption to these sediments. All adjustments suggested in
Zavarin et al. (2002) are included in the calculations presented here. The radionuclide-mineral
Ks based on our mechanistic model are summarized in Table 4.3. For details regarding the
process used to calculate these K;s based on the mechanistic sorption model, see Pawloski et al.
(2001) and Zavarin (2002).

Table 4.2 Fluid composition used in mechanistic sorption model.

Concentration”

pH 8.4+0.3%

mg/kg
F 1.140.3
Na* 7926
K* 6.7+1.0
Mg™ 2.8+1.7
Ca™ 12.0+4.7
Sr2+ -
Cr 13.243.5
HCO;5™ 190462
SO, 34.8+8.7
SiO, 56+211

" Average based on Rose et al. (1997) and additional unpublished LLNL data.
Y Uncertainty (=1SD) determined from analyses of a number of groundwater samples.
"Data regarding Si was not reported: value of IT (1999) was used.



Table 4.3 K,s based on the mechanistic sorption model.

Zeolite Iron Oxidel

Calcite  (clinoptilolite) ~ (hematite) ~ Mica/illite*  Smectite

------------------------------------ Log (Kj) ------===m=mmmmmmmmmmmemm e
Am 4.30 3.23 4.72
Ca 0.44 3.51 2.33 2.67
Cs 3.47 545 - 2.80
Eu 4.02 291 3.92
Np 1.58 1.95 1.23
Pu (0, = 107} 1.20 1.99 1.77
Pu (0,=10"'% 1.69 2.48 2.15
Pu (0= 1079) 2.30 3.07 2.60
Sm 4.56 3.08 4.09
Sr -1.31 3.29 -0.02 2.32 2.27
U -3.07 1.83 0.79

$Pu K4s determined at three O,(g) fugacities ; 107, 107° and 107" bars. The range of Ox(g) fugacities was
suggested in Zavarin et al. (2002) to evaluate the effect of Pu redox state on transport.

T Mechanistic sorption model is based on hematite. However, XRD analysis did not distinguish between
hematite, goethite, hydrous ferric oxide, magnetite, ilmenite, maghemite, or pseudobrookite iron oxides. We
assume in our model that all iron oxides behave similarly.

¥ Mechanistic sorption model is based on illite. However, XRD analysis did not distinguish between illite and mica.
We assume in our model that these two minerals behave similarly.

4.1.3 Radionuclide-Alluvium Kgs

Based on the Ks in Table 4.3, we can employ the component additivity approach to predict
radionuclide Ks as a function of alluvium mineralogy. The component additivity approach
(Zavarin, 2002) relies on the principal that the radionuclide K for a particular alluvium
mineralogy is simply the sum of individual K, contributions from the various radionuclide
sorbing minerals in the alluvium. Thus, based on the data in Table 4.3, the K, (mL/g) for each
radionuclide under specific mineralogic conditions is defined by:

. - 4.30 323 4.72
Am: Kd - fcalcite 10 + fhemame 10 + fsmectite 10

Ca . Kd = fcalcne 100'44 + fclirwprilolm:101Sl + fmica 102.33 + meecme 102'67
CS . Kd = fclirwpnlolite 103.47 + fmzca 105-45 + fsmecu‘ze 102'80

Eu : Kd = fcalcitelo."o2 + fhemarile 102‘91 + fsmecynglO}gz

Np : Kd = fcalcitelol.58 + fhematite 101‘95 + fsmectiteloL23

Pu(o?— = 105) : Kd = fcalcitelollzo + fhematite 101.99 + fsmecrilelol‘77
PU(OZ = 10_10) : Kd = .fcalc‘ilelol.69 + f‘hemam‘eloz.48 + fsmecn'relOz.IS
Pu(OE = 10-15) : Kd = fcalcltelozjo + fhemalitelog)‘o7 + fsmectiteloz60
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. — 4.56 3.08 4.09
Sm: K da = f calcitelO + f hematite 10 + f smectitelo
. _ -1.31 3.29 -0.02 232 227
SI' : K d~ f calcite 10 + f clinoptilolite 10 + f hematite 10 + mica IO + f smectite 10

. — -3.07 1.83 0.79
u: Kd - fcalcile 10 + fhemalite 10 + fsmeclite 10

where fis the mineral mass fraction in the alluvium.

4.2 Histograms and Lateral Variation of K4

In Figures 4.1 to 4.11, histograms of Ks are plotted on a log scale for each radionuclide.
Separate histograms are shown for XRD data from all drillholes and for XRD data from
drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1 individually. The log scale (versus linear) is
useful because

e it helps span the wide variation in Kj for different radionuclides (over 5 orders of
magnitude),

e the K;s tend to be distributed as log-normal, and

¢ stochastic models of K; usually assume a log-normal distribution.

The histograms are useful for examining the variation of K in several ways:

to illustrate the range of Kys for the radionuclide,
e to illustrate the most frequent K;s for the radionuclide,

e to examine the shape of the distribution compared to a log-normal (Gaussian)
distribution, and

e 1o examine the possibility of bi-modal or multi-modal distributions.

Drillholes ER-5-4 and UE-5n are situated in central Frenchman Flat, and drillholes ER-5-3 and
U-11g-1 are situated in northern Frenchman Flat. Comparison of the histograms for drillholes in
different locations is useful for examining how K varies (or does not vary) laterally as a result of
changes in sorbing mineral abundances.® These drillhole locations are sufficiently distant to
detect lateral variations or trends in Ky, should they exist in Frenchman Flat. The issue of

¥ Note. however, that we have not evaluated whether changes in groundwater chemistry in Northern and Central
Frenchman Flat would have an additional effect on radionuclide retardation. In this report, we assume that the
groundwater chemistry in all of the Frenchman Flat alluvium is essentially identical. Thus we are evaluating the
effects of mineral variability only. Other effects such as groundwater composition changes may further affect K;s.
This is particularly the case when approaching the carbonate aquifer whose groundwater chemistry is believed to be
quite different.



laterally varying K, is of potential concern for Corrective Action Unit (CAU) scale radionuclide
transport modeling efforts in Frenchman Flat. If significant lateral variations or trends in K,
exist, CAU scale models may need to provide enough model resolution to account for
differences in radionuclide transport properties as a function of alluvium location. If, however,
radionuclide retardation is relatively uniform in Frenchman Flat alluvium, spatially
heterogeneous radionuclide retardation information may not be necessary to consider at the CAU
scale. Heterogeneous lateral K s may also be of concern for near-field HST modeling efforts
because K variability may impact categorization of underground nuclear tests.

To address modeling issues related to K, for different radionuclides, we first examine the
histograms of K, for radionuclides Am, Ca, Cs, Eu, Np, Pu, Sm, Sr, and U, as shown in Figures
4.1 to 4.11. The main issues of concern are the magnitude and spread of Ks, which are indicated
by the mean and standard deviation statistics. The coefficient of variation, which is the standard
deviation divided by the mean, indicates the range of spread in the distribution, where a value of
1.0 or greater indicates a wide spread. All of the histograms of K, have a coefficient of variation
less than 1.0, indicating that the K;s typically have a relatively narrow range. Other statistics
included on the histograms are the minimum and maximum values, lower and upper quartiles
(25" and 75" percentiles), and median (50" percentile). A bell-shaped distribution on the log
scale indicates a log-normal distribution of K. A bi- or multi-modal distribution is indicated by
two or more peaks in the frequency distribution. Lateral variation is indicated if the mean values
and shapes of the distributions are significantly different for data from different drillhole
locations. Table 4.4 summarizes our interpretation of the radionuclide K, histograms for the
XRD data from all drillholes. Our interpretations of distribution shapes are based on visual
inspection.

Table 4.4 Summary interpretation of radionuclide K, histograms.

Mean o Log- Bi- Multi- Lateral
Radionuclide (mL/g) (mL/g) Normal? Modal? Modal? Variation?
Am 8280 4610  Yes No No No
Ca 392 345 No Yes No Yes
Cs 10100 4770 Yes No No Yes
Eu 1700 1100 Yes No No No
Np 4.68 3.14 Yes No No No
Pu(0,=107)% 9.37 485  Yes No No No
Pu(0,=10"% 234 121 Yes No No No
Pu(0:=10"") 70.2 362  Yes No No No
Sm 3560 2870 Yes No No No
Sr 225 210 No Yes No Yes
U 1.15 0.49 Yes No No No

¥ Pu Ks determined at three Ox(g) fugacities : 107°, 107'%, and 107" bars. The range of Ox(g)
fugacities was suggested in Zavarin et al. (2002) to evaluate the effect of Pu redox state on transport.
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Most of the K distributions for different radionuclides, namely Am, Eu, Np, Pu, Sm, and U,
appear to be well characterized by a log normal distribution and exhibit no significant lateral
variation. For these radionuclides, a stationary stochastic model of K variation for Frenchman
Flat based on a log-normal distribution may be a valid model assumption.

The exceptional radionuclides are Ca, Cs, and Sr. The retardation of these radionuclides is
dominated by ion exchange reactions rather than surface complexation reactions. The dominant
ion exchanging minerals include smectite, clinoptilolite, and illite/mica. Both Ca and Sr exhibit
a notable bi-modal shape in the histogram for all XRD data. The higher K;s for Ca and Sr tend
to occur in northern Frenchman Flat (in drillholes ER-5-3 and U-11g-1) and the lower values in
central Frenchman Flat (in drillholes ER-5-4 and UE-5n). This difference is primarily attributed
to differences in zeolite (clinoptilolite) abundance, which tend to be greater in the northern
Frenchman Flat drillholes. This is consistent with K, data listed in Table 4.3, which shows that
Ca and Sr have a greater affinity for zeolite (clinoptilolite) than for any other mineral in the
model. Therefore, large-scale spatial variation of zeolite is a key issue to consider for Ca and Sr
transport modeling in Frenchman Flat. Although the frequency distribution of K, for Cs appears
log-normal at different locations, some lateral variation in the mean K is evident. The mean Ky
for Cs in the central Frenchman Flat drillholes (ER-5-4 and UE-5n) is about 11,300 mL/g, and
the mean K/, for Cs in the northern Frenchman Flat drillholes (ER-5-3 and U-11g-1) is about
7220 mL/g. This difference is attributed to a larger abundance of illite/mica in the central
Frenchman Flat drillholes. However, the difference is not large when compared to the range of
variation of K, observed in within either the central and northern Frenchman Flat drillholes.
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Figure 4.1 Log-scale histograms of K, for Am based on XRD data for all drillholes and ER-5-4,

UE-5n, ER-5-3, and U-11g-1 individually.
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Figure 4.2 Log-scale histograms of K, for Ca based on XRD data for all drillholes and ER-5-4,
UE-5n, ER-5-3, and U-11g-1 individually.
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Figure 4.3 Log-scale histograms of K, for Cs based on XRD data for all drillholes and ER-5-4,
UE-5n, ER-5-3, and U-11g-1 individually.

4-11



All XRD Data

— A Number of Data 163
0200 mean 1685.28
— 3] std. dev. 1087.57
- coef. of var 0.65
— a maxmum 7400.00
0.150 h upper quartie 1900.00
] median 1400.00
- lower guartie 1100.00
g — minimum  360.00
g 0100 ___]
frel —
0.050 ]
0.000 HL
i T T o M T
0.1 1 10 100 1000 10000 100000
Kd Eu
ER-54 UE-5n
— - Number of Data 94 — ~ Number of Data 21
— b mean 1775.74 : mean 1236.67
— std. dev. 1177.70 — std. dev. 261.19
0.160 ] coef. of var 066 0.400 ] coef. of var 0.21
= maximum 5700.00 — maximum  2000.00
upper quartile 1900 00 — upper quartile 1325.00
] median 1400.00 - median 1200.00
- r lower quartile 1100.00 — lower quartile 1100.00
% 0120 mnimum  360.00 > 0'300: mnimum - 850.00
— € —
% - g -
— g —
L 0080_] & 02007} |
— — i
0.040__] 0100}
= il 3 il
— |
0.000 T T il g T e T 0.000 T T T "v T T
01 1 10 100 1000 10000 100000 01 1 10 100 1000 10000 100000
Kd Eu Kd Eu
ER-5-3 U-11g
- - Number of Data 45 — m Number of Data 3
—] mean 1729.11 — ! mean 1333.33
0200 std. dev. 1109.05 0.300 ! std. dev. 249.44
— F coef. of var 0.64 — i coef. of var 0.19
— maximum  7400.00 — } maximum 1800.00
- upper quartie 2125.00 | upper quartile 1550.00
0.150__] median 1600.00 ] i median 1400.00
] lowser quartie 1075.00 — \ iower quartile 1100.00
§' — mnmum 440.00 § 0200 | | minimum  1000.00
H - 3 — J
g 0100 ] g — :
o 1S — !
— 0.100 |
0.050 ] 7 |
- . j
0.000__] ﬂ 0.000 |
T T wehy ol T T T T T T ™
0.1 1 10 100 1000 10000 100000 01 1 10 100 1000 10000 100000
Kd Eu Kd Eu

Figure 4.4 Log-scale histograms of Ky for Eu based on XRD data for all drillholes and ER-5-4,

UE-5n, ER-5-3, and U-11g-1 individually.
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Figure 4.7 Log-scale histograms of K for Pu(O2=-10) based on XRD data for all drillholes and

ER-5-4, UE-5n, ER-5-3, and U-11g-1 individually.
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Figure 4.9 Log-scale histograms of K for Sm based on XRD data for all drillholes and ER-5-4,
UE-5n, ER-5-3, and U-11g-1 individually.
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Figure 4.10 Log-scale histograms of K for Sr based on XRD data for all drillholes and ER-5-4,
UE-5n, ER-5-3, and U-11g-1 individually.
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4.3 Vertical K, Variability

The potential for vertical variability of K; is of concern for both CAU and HST scale radionuclide
transport modeling efforts. Contaminant source location is obviously related to test depth, which
both CAU and HST scale models must consider. As indicated from the XRD data, mineralogy can
vary significantly with depth, particularly in certain zones (see Chapter 3) or alluvial layers (Warren
et al., 2002). To address the long-term issue of potential downward and lateral migration of
radionuclides out of Frenchman Flat alluvium toward deeper aquifers, vertical variation of K; may
need to be addressed. Spatial variation of Kj, in general, will tend to produce a dispersive effect on
radionuclide transport (Garabedian et al., 1988; Tompson, 1993; Abulaban and Nieber, 2000).

Radionuclides may be transported several hundred meters vertically within several years
following an underground nuclear test. Vertical transport has been documented by migration of
radionuclides away from the Benham test (Kersting et al., 1999) and downgradient radionuclide
sampling and HST modeling of the Cheshire test at Pahute Mesa (Erikson, 1991; Pawloski et al.,
2001). This vertical radionuclide transport results from an upward component of groundwater
flow. In addition to naturally occurring mechanisms for upward groundwater flow, such as
faults, heterogeneity, or geothermal gradients, the underground nuclear test itself may cause
vertical groundwater flow through a combination of test-induced effects, such as the collapse
chimney, fractured zones, test pressure, and test heat (Pawloski et al., 2001). As shown in
Section 4.2, the K, histograms for mineral abundance data from drillholes ER-5-4, ER-5-3,
UE-5n, and U-11g-1 exhibit uni- or bi-modal log-normal distributions. In the following sections,
we examine vertical variability of K, in these driltholes as a function of depth. The K, data are
presented in both log and linear scales to facilitate interpretation of the data. A variogram
analysis of vertical spatial variability of K; is presented in Chapter 5.

4.3.1 Log-Scale Vertical K, Variability

Figure 4.12 plots K, for radionuclides on a log scale versus depth. The K;s are derived by
application of the XRD mineral abundance data to the equations given in Section 4.1.3. In
addition to illustrating the wide range in magnitude of K, for different radionuclides, these plots
show that K, generally varies within one order of magnitude for each radionuclide (also indicated
by histograms presented in Section 4.3). Some of the larger-scale variations can be traced to
zones described in Chapter 3, such as depth intervals in drillhole ER-5-4 with high abundances
of clinoptilolite at 310-340 m depth and calcite at 700-780 m depth. K,s for Ca and Sr, the two
radionuclides with pronounced bi-modal K, distributions, exhibit a strong dependence on the
abundance of clinoptilolite. The relatively higher mean value of K, for Cs in drillhole ER-5-4
compared to ER-5-3 can be attributed to higher mica abundances in the depth range of 320 to
430 m in ER-5-4. Kjys appear to correlate between drillholes ER-5-4 and UE-5n at similar
depths, as well as between drillholes ER-5-3 and U-11g-1. This apparently localized lateral
correlation is examined more closely in the next section. The spatial distribution of Ks exhibits
a combination of structured and random variability. Because the Ks are a function of several

.mineral abundances, spatial variation of K; over the entire alluvial section appears to behave
more as a random field compared to spatial variation of abundance of individual minerals, which
is more directly linked to mineralization zones or alluvial layers.
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Figure 4.12 Kgs of all radionuclides plotted on log scale versus depth at locations having XRD
data for drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1.
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4.3.2 Linear-Scale Vertical Ky Variability

Figures 4.13 to 4.15 plot K, as a function of depth on a linear scale for different radionuclides,
with Ks from the different drillholes on the same graph. These plots permit close examination
of the lateral correlation of K; between drillholes for different radionuclides. The radionuclide
K s correlate well between drillholes ER-5-4 and UE-5n in central Frenchman Flat and between
drillholes ER-5-3 and U-11g-1 in northern Frenchman Flat. The major variations in K; with
depth can be related to the mineralization zones described in Chapter 3, which are related to the
alluvial layers identified by Warren et al. (2002). For example, the high Sr K;s between 320 and
340 meters in ER-5-4 can be attributed to high clinoptilolite abundance in that zone. Similarly,
high Am, Eu, Sm, Np, and Pu K;;s between 700 and 900 meters in ER-5-4 can be attributed to
high calcite abundances in that zone. These layers appear to be laterally extensive, but not over
the entire extent of Frenchman Flat. The K, correlations between wells are complicated by the
fact that predicted Kys are a function of a combination of minerals weighted by their respective
radionuclide affinities. Correlations between the wells are more easily observed where
mineralogy is examined directly (Chapter 3). Since the K;s are based on the abundance of a
combination of minerals, radionuclide K, variability is buffered to some degree.9 Regardless, it
is important to view these data in the context of radionuclide retardation as this will be principle
parameter controlling the transport of radionuclides in the near- and far-fields. Based on these
K data, it appears likely that vertical K variability will affect radionuclide transport for some
radionuclides.

It is important to remember that the variability in K; discussed in this report is based on a
component additivity approach that assumes that the affinity of a radionuclide for a mineral
surface under the specified average solution conditions does not change. Thus, is assumes that
the K, of Sr with regards to clinoptilolite is identical throughout the Frenchman Flat alluvium.
The Sr K, with respect to the alluvium varies only as a function of the mass fraction of sorbing
minerals in the alluvium. We do not account for possible changes in K, that might result from
changes in the accessibility of sorbing minerals. For example, the clinoptilolite in the high
zeolite zone (320 to 340 meters in ER-5-4) may be less accessible or behave differently
compared to the clinoptilolite in the low zeolite zones. The predicted K;s discussed here are
based on the upscaled mechanistic component additivity approach described earlier in this
chapter. This approach has a number of limitations that should not be ignored.

The pattern of K variability suggests that smaller scale HST models might incorporate vertically
zoned variations of K, based on alluvial layers or chemofacies. As for larger-scale CAU models,
consideration of vertically zoned variation of K; would require additional knowledge or
assumptions about the lateral extent of the alluvial layers. Alternatively, spatial variation of K,
might be plausibly considered at the CAU-scale by assuming a stochastic random field based on
a log-normal distribution for the radionuclides Am, Eu, Np, Pu, Sm, and U. For Ca and Sr, some

’ Buffering refers to a concept that large variability in, for example, clinoptilolite abundance may not
completely dominate Ky variation for Sr because other minerals, such as smectite, will tend to
compensate for the large variations in clinoptilolite, resulting in a more uniform Kj.
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additional assumptions about large-scale spatial variation of zeolitized zones may need to be
considered. Alternatively, the more conservative region of the bi-modal log-normal distribution
may be used. For Cs, some additional assumptions about large-scale spatial variation of mica
may need to be considered. On the other hand, histogram data suggest that the lateral variations
of Kgs for Cs may not be significant compared to the localized variation. These zonal and
random field approaches to simulating spatial variation of K, are further discussed in Chapter 6.
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5 Variogram Analysis

This chapter applies the geostatistical technique of variogram analysis to quantitatively evaluate
spatial variability of mineral abundance and K; within Frenchman Flat alluvium. In application
to the XRD mineral abundance data, “experimental” variograms are computed in the vertical
direction for logarithms of mineral fractions within each of the mineralization zones identified in
Chapter 3. The variogram analysis indicates that for all minerals except hematite, the spatial
variability of mineral abundance within a mineralization zone is mostly attributable to micro-
scale variability. The term “micro-scale” variability refers to spatial variability at a scale that is
smaller than the minimum data spacing, which ranges from about 0.3 to 3 m depending on the
mineral.

In application to the log;o[K4] values derived in Chapter 4, experimental variograms are
computed in the vertical direction for each radionuclide. Variogram models indicate that spatial
variation of K is attributed in part to micro-scale variability and in part to subregional-scale
spatial variability related to mineralization zones or alluvial layers. The term “subregional-
scale” refers to spatial variability at scales smaller than the region of interest, which is the
northern portion of the Frenchman Flat basin. Lateral variogram models of log;o[K4] could be
inferred by combining vertical variogram parameters with experimental lateral-direction
variogram values obtained by comparing data from drillholes ER-5-4 and UE-5n.

5.1 Variogram Theory

Different bivariate statistics (e.g., spatial covariance, spatial correlation, or variogram) can be
used to quantitatively characterize spatial variability of a geologic attribute such as mineral
abundance or K;. These statistics are spatially dependent because they are formulated as a
function of “lag” or vector separation between data from different locations. In practice, the
variogram is usually employed instead of spatial covariance or correlation to allow for
consideration of nonstationarity in the mean.

Variogram analysis is most successfully applied in directions were data are aligned so that
numerous data pairs exist for a given lag. In most subsurface applications, the vertical direction
is most conducive to variogram analysis, given borehole data. Lag spacing is chosen by
considering data spacing and number of data pairs per lag. The maximum practical magnitude of
the lag is dictated by the spatial extent of the domain or “zone” of interest. Usually, lags with
magnitude of Y2 or greater the spatial extent of the domain are subject to error. For example, if
data are collected in a vertical borehole at 1 m spacing in a 100-m-thick zone with uniform
statistical properties, then the variogram analysis could be performed in the vertical direction at 1
m spacing, but variogram values for lags greater than 50 m would likely be subject to error.
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5.1.1 Stationarity

As discussed in Chapter 3, the issues of stationarity and normality are crucial to performing a
geostatistical analysis of spatial variability. For that reason, this study carefully examined the
frequency distributions and zonal variations of mean mineral abundances in Chapter 3. To
review, the concept of stationarity in a geostatistical context means that the statistical measures
used to characterize the spatial variability of the data are constant, do not depend on location
within the region being characterized, and depend only on the lag vector. Usually, only first- and
second-order statistics are employed (e.g., mean, covariance, variogram, etc.), with the
assumption that the frequency distribution is approximately normal.

If the data are truly second-order stationary (mean and covariance are stationary), either the
spatial covariance or variogram will yield effectively the same measure of spatial variability.
However, in many earth science applications, the mean of the data may vary smoothly (exhibit a
trend). In this case, the variogram, which employs the concept of “intrinsic stationarity” to allow
for nonstationarity of the mean, is a more robust measure of spatial variability. Therefore, the
variogram, rather than the spatial covariance or correlation, is usually applied to the analysis of
spatial variability of geologic attributes.

5.1.2 Variogram Formulation

The variogram (or semivariogram), y(h), is defined by

v(h) =%E{[V<x>—wx+h)]2}

where V (x) is the random variable (e.g., mineral fraction or Kj) at a location x, and h is the lag

(separation vector between data at two different locations). In words, the variogram is the
expected value of one-half the squared difference of data values at different locations separated
by a vector of variable magnitude and direction. Ideally, as shown in Figure 5.1, the variogram
magnitude is zero or small at h = 0 (the “nugget”) and rises in magnitude with increasing h until
asymptotically reaching a plateau (the “sill”’) at a lag beyond which the variogram does not
increase much in magnitude (the “range”). The range of spatial correlation is indicated by the
variogram “range.” The magnitude of the nugget indicates the degree of spatial variability
attributed to very small scale or “micro-scale” variability. The sill indicates the magnitude of
variability attributed to the total of micro and subregional-scale (within the region of interest)
variability. If the data are second-order stationary, the magnitude of the sill will correspond to
the variance. If the mean varies with location or a trend exists in the data, the variogram sill may
not match the variance of the data at large h.
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Figure 5.1 Schematic showing variogram attributes: nugget, sill, and range.

5.1.3 Variogram Estimation

In practice, experimental variogram values are usually estimated from

N(h)

- (X)—v. h P
v(h) N 2 b, (x)—v,(x+h)]

where

N(h) is the number of data pairs separated by a lag h, and
v,(x)and v, (x + h) is the ith data pair having a separation of h.

An important consideration for obtaining successful variogram estimates is to have enough data
pairs for each lag of interest. If the number of data pairs is inadequate, the experimental
variogram may appear scattered or noisy. Typically, at least 20 data pairs are needed to yield
reasonably accurate variogram value estimates for a single lag.

In most applications, including this study’s, the data are not regularly spaced. Therefore, it is
necessary to allow for a range of lags to estimate each value of y(h). Usually, each value

of y(h) is computed over a range of h, and the average value of h is used in presentation of the
experimental value of y(h). In this study, the ranges of h were allowed to vary to obtain a

minimum number of data pairs. These ranges of h varied for different mineralization zones
because of differences in the amounts of data and spacing of data pairs.
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5.2 Application to Mineral Abundances within Mineralization Zones

As discussed above and in Chapter 3, the interpretation and identification of mineralization zones
was implemented given the fact that the mineral abundance data exhibit zonal variations with
depth. These zonal variations were evident by significant and abrupt shifts in the mean value or
variance of mineral abundances. From a geostatistical perspective, these shifts in the mean
values of mineral abundances represent a nonstationarity that required sorting of the data into
different categories within which intrinsic stationarity could be assumed. Intrinsic stationarity
could not be assumed throughout the entire depth because of the abruptness of the changes in
mean values and nonstationarity of variance.

Based on geostatistical theory and the analysis of univariate statistics given in Chapter 3, it is
reasonable to assume that spatial variation of logarithms of mineral fraction within each
mineralization zone can be characterized by a variogram. Because the data were sampled from
multiple locations in vertical drillholes, the data provide excellent coverage for examining vertical
spatial variability of mineral abundances over scales of meters to hundreds of meters.
Implementation of variogram analysis to examine lateral spatial variability of mineral abundances
is thwarted by the limited number of drillholes having abundant XRD data as obtained from
drillholes ER-5-4, ER-5-3, and UE-5n. Only data from drillholes ER-5-4 and UE-5n provide
significant numbers of data for evaluation of lateral continuity of mineral abundances. However,
these two drillholes provide information at only one lag vector. Ideally, similar spatial density of
mineral abundance data obtained from several closely-spaced (e.g., 0.1 to 2 km) drillholes might
be used to quantitatively and directly evaluate lateral spatial variability of mineral abundance.

5.2.1 Vertical Variograms of Log Mineral Abundance

Figures 5.2 to 5.5 show experimental variograms for logarithms (base 10) of mineral abundances
within each mineralization zone identified in Chapter 3. The experimental variogram values are
shown by symbols, indexed to each zone with zonal mean value of mineral abundance given in
percent. The dashed lines on each variogram plot indicate the variance of the logarithm of
mineral fraction within each mineralization zone. The variance line provides an indication of a
reasonable variogram sill value assuming second-order stationarity. For most mineralization
zones, the data variance does indeed provide a plausible variogram sill value. Zones represented
by XRD values below the detection limit are indicated by a zone mean value of 0.0. The
constant zero values in these zones produce variograms with constant zero values.

For each mineralization zone of each mineral, the experimental variogram values were obtained
for lag intervals with a minimum of 40 data pairs. Different minimum numbers of data pairs
were attempted on this data set — forty were found to be the minimum number of data pairs
needed to adequately reduce scatter in the experimental variogram values. Notice that depending
on the mineral and zone, different numbers of experimental variogram values were computed
because of the differences in numbers of data pairs. For example, for the mineralization zones of
calcite having a mean values of 2.79%, 20.61%, and 8.89%, there are 16, 2, and 3 variogram

- values, respectively. These differences reflect the fact that the mineralization zone of calcite
with a 2.79% mean value is much more abundant than the other zones.



Another important feature in the variograms is that variance of the log;o mineral abundances is
often different in the different mineralization zones. For example, the variance of calcite within
the zone of 2.79% mean value is about 0.15, whereas the variance is between 0.01 and 0.02 for
the other zones with non-zero mean values. Because these variances are computed from the
logarithm of the mineral abundances, the variance is scaled relative to the magnitude.
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U-11g-1. Zonal variances are shown by dashed lines for reference.
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5.2.2 Interpretation

The most important result of the variogram analysis of mineral abundances within the
mineralization zones is that, with the exception of hematite-bearing zone, the spatial variation of
mineral abundances can be plausibly modeled by a variogram having pure nugget (no spatial
correlation). Thus, with the exception of hematite, spatial variation within the mineralization
zones for all of the sorbing minerals is essentially random down to scales of less than one meter.
The variograms indicate that some non-sorbing minerals such as kaolinite (0.42%) and
hornblende (0.28 % mean) may exhibit some spatial continuity within zones, however the data
are insufficient to confirm this. The major component of spatial variation of the mineral
abundance is attributed to different mineralization zones, which are related to different alluvial
layers identified by Warren et al. (2002). Therefore, the issue of vertical and lateral spatial
variation of mineral abundances, which is of concern to development of CAU and HST scale
transport models in Frenchman Flat, may be best addressed by considering the three-dimensional
geometry of chemofacies or alluvial layers.

For hematite, vertical spatial variability of log;o hematite abundance within hematite-bearing
zones (about 81% of the alluvium sampled) appears to have a correlation range of about 5 m.

Figure 5.6 shows a variogram model fit to the experimental variogram values (minimum of 20
data pairs) for the hematite-bearing zone. The variogram model parameters are

e nugget=0.0
e s5ill=0.0178
e range=5.0m

e structure = exponential

such that the variogram model is formulated by:

v(h.)=0.0178 x[l.o - exp( —3h, ]]
) 50m

where A_is the lag in the vertical (z) direction. This variogram model could be used to

characterize vertical spatial variability of hematite within hematite-bearing zones. However,
explicit consideration of vertical spatial variation of hematite within mineralization zones would
require numerical grid spacing of Sm or less in the vertical direction.
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Figure 5.6 Variogram model fit to the experimental variogram in the vertical
direction for the log, fraction of hematite in the hematite-bearing mineralization
zone.

5.3 Application to K,

In the application of variogram analysis to logio[Kq], the combined effect of spatial variability of
mineral abundances within and between mineralization zones is lumped together. Conceivably,
K, could be treated as a random field in CAU or HST scale transport models in Frenchman Flat.
This approach might be used to model the spatial distribution of K, directly as an alternative to
modeling the spatial distribution of mineral abundances, then translating the mineral abundances
to K;s. To implement this direct K; approach, plausible random field models of K, will need to
be developed. Geostatistical simulation approaches, such as sequential Gaussian simulation
parameterized by 2- or 3-D variogram models (Deutsch and Journel, 1998), could provide
plausible random field models of Kj, as implemented in Chapter 6.

As shown in Chapter 4, the K;s computed for the radionuclides Cs, Am, Eu, Sm, Np, U, and Pu
tend to exhibit a log-normal distribution. The exceptions are Ca and Sr, which exhibit bi-modal
distributions of log;o[K;]. The depth profiles generally exhibit little vertical variation in the
mean. Some lateral variations in mean Kjs between wells in central and northern Frenchman
were evident for the radionuclides Ca, Cs, and Sr. These lateral variations in K; were attributed
to lateral variations in clinoptilolite and mica abundance between central and northern
Frenchman Flat. Based on these data, it may be plausible to assume that stationary K, random
field models could be developed for the radionuclides Am, Eu, Sm, Np, U, and Pu for CAU or
HST scale transport models in Frenchman Flat. For Ca, Cs, and Sr, some consideration of lateral
nonstationarity in mean Ky in Frenchman Flat may need to be integrated into the development of
"CAU or HST scale transport models. In either case, three-dimensional variogram models could
be used to characterize three-dimensional spatial variability of log;o[Ky].
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The excellent vertical sampling afforded by the XRD data from drillholes ER-5-4, UE-5n,
ER-5-3, and U-11g-1 enables estimation of experimental variograms of log;o [K;] in the vertical
direction. Vertical variogram models for spatial variation of logio [K;] can be developed. At this
time, quantification of lateral spatial variability remains the major difficulty in development of
three-dimensional variogram models for logio [K4].

5.3.1 Vertical Variogram Analysis of 10g1o[Kq]

Figure 5.7 shows variogram values of logio[K,] computed from the composite of XRD data from
drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1. The experimental values are indicated by
symbols, and fitted variogram models are indicated by solid lines of matching color. Different
variogram structures are evident for different radionuclides. The sill of each variogram model is
matched to the experimental variogram values of 300 m or less. The variogram values at lags
greater than 300 m begin to suffer from the “L/2” effect, where data pairs with lags greater than
one half of the spatial length of the data set are adversely affected by extreme values.

The vertical variograms of logo [K,] for Cs and U appear to lack spatial correlation, evident by
experimental variogram values that oscillate near the sill for all lags. Nevertheless, a small
degree of spatial continuity is incorporated in the model. The vertical variograms for log;o[K,]
of Am, Eu, Sm, Np, and Pu all show similar structure, with about 30-45% of the spatial variation
attributed to micro-scale variability, and the remaining subregional-scale variability attributed to
a exponential structure with a range of correlation of about 300 to 400 m. The subregional-scale
variability is attributed to different mineralization zones or alluvial layers. The radionuclides Ca
and Sr exhibit much larger magnitude of spatial variation dominated by subregional-scale spatial
variability of log;o [Ky]. The vertical variogram structures for log;o[K]of Ca and Sr are largely
attributed to variations of clinoptilolite abundance in different mineralization zones. The nugget
component all of these variograms is directly related to micro-scale variability within the
mineralization zones. Table 5.1 shows the logio[K] vertical variogram model parameters used
in Figure 5.7. Certainly other variogram model parameters, including variogram structures such
as the spherical function, could be proposed to fit the experimental variograms. The variogram
model parameters are given as plausible values to consider in developing stochastic realizations
of logio[K4]. Certainly other model interpretations of the experimental variograms could be
made.
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Table 5.1 Parameters for vertical variogram models of log;o[K;] shown in
Figure 5.7 for radionuclides Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu.

Radionuclide Nugget Sill ?rﬁ;lge Vertical Variogram Model Equation
Ca 0.015  0.105 150 y(h,) =0.015+0. 0901 - exp( 150m)J
Cs 0.040  0.040 0 y(h.) =0.040

Sr 0.015 012 150  y(h)=0.015+0.105] —exp(- )|
Am 0016  0.052 300 y(h)=0016+0.0361 - exp(- 5]
Eu 0.020  0.065 300 y(h,) = 0.020+ 0.045]1 — exp(- %E)J
Sm 0.028  0.087 300  y(h )=0.028+0.059]1 — expl- )|
Np 0.020  0.065 400  y(h )=0.020+0.045] - exp(— )|
u 0023 0027 300  y(h )=0.023+0.004]1 - exp( )|
Pu(0=-5) 0018  0.043 300  y(h )=0.018+0.043]1 - exp(- s )|
Pu(0y=-10)  0.017 0042 300  y(h)=0.017+0.042[1 — exp(— )
Pu(O;=-15)  0.016  0.041 300  y(h)=0.016+0.041]l - expl- oo )|
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Figure 5.7 Experimental and modeled vertical direction variograms of logso [K4] for

radionuclides Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu based on XRD mineral abundance
data from drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1 in Frenchman Flat.
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The issue of the bi-modal log;o [K,] frequency distributions for Ca and Sr can be addressed by
separating the Ks into two sub-populations — low and high — based on cutoff values of 300
and 200 ml/g for Ca and Sr, respectively. Vertical spatial variability within the low and high K,
zones can be assessed by variogram analysis of the sub-populations of data defined by the cutoff
values. Figure 5.8 shows vertical experimental and model variograms of K, spatial variability of
Ca and Sr within the low and high K, zones. Table 5.2 shows the parameters of the variogram
models in Figure 5.8. The sill values are much smaller than for the variogram models of the
complete Ca and Sr K, data because the spatial variability of K, related to differences between
low and high K is removed. The variograms for the high K; zones exhibit a large nugget
component of the variogram, indicating that spatial variability of K; within the high K, zones for
Ca and Sr is dominated by micro-scale variability. The variograms for the low K, zones exhibit
more spatial continuity, indicating that subregional-scale spatial variations of K; would exist
within the low K, zones.
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b + Ca- High Kd
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c ; odels o o
1} 7] o + ©
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D .04 + e
2 4
© b o) (e}
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Figure 5.8 Experimental and modeled vertical direction variograms of logo [Ky] for
radionuclides Ca and Sr separated into low and high Ky zones based on 300 and
200 mL/g cutoffs, respectively.
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Table 5.2 Parameters for vertical variogram models of log;o[K;] shown in
Figure 5.8 for low and high K, zones or radionuclides Ca and Sr.

Range
Radionuclide Nugget  Sill (m) Vertical Variogram Model Equation

Ca-lowKs 0007 0026 400  y(h)=0.007+0.019] - exp(- 400m)j
Ca-highKs 0029 0042 400  y(h )=0.029+0.042]1 - exp(- 2
St—lowKs 0009 0045 400  y(h)=0.009+0.045] - exp(-
Sr—highK; 0021 0035 400  y(h)=0.021+0.035]—exp(- =2

\s:n___‘—’ﬁ

818

5.3.2 Lateral Spatial Variability of log1o[Kd]

Three-dimensional stochastic realizations of K; could be used to examine the effect of spatial
variability of K on radionuclide transport. Generation of the realizations would require
development of three-dimensional variograms of logo[K;]. The XRD mineral abundance data
from drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1 have provided an excellent foundation for
evaluating vertical spatial variability of logio[Ks]. However, the characterization of lateral
spatial variability of K, is more difficult to determine from drillhole data.

In general, it is difficult to directly characterize lateral spatial variability of geologic attributes
for several reasons:

¢ Drillholes are vertical and, thus, preferentially sample the vertical direction.

e Heterogeneity within geologic formations, such as alluvial deposits, is controlled by
irregular depositional processes that are difficult to track laterally.

e The “lateral direction” is not necessarily horizontal or parallel to the ground surface.

o [f the spatial variability is strongly anisotropic between the lateral and vertical
directions, small dip angles compound the difficulty of correlating geologic attributes
between drillholes.

Of the XRD data from drillholes ER-5-4, UE-5n, ER-5-3, and U-11g-1, only the data from
ER-5-4 and UE-5n offer a possible opportunity to quantitatively analyze lateral spatial
variability of K;, and only for a lag of 477 m (the distance between drillholes ER-5-4 and
UE-5n). Between these two drillholes, the mineral abundances do appear to show correlation
(see Chapter 3). Although drillhole ER-5-3 has much data, the mineral abundances are clearly
different from ER-5-4. Drillhole ER-5-3 appears to be located beyond the lateral range of
correlation of logio[ K4] with respect to drillhole ER-5-4. Drillhole U-11g-1 has only three data,
which are madequate to estimate a variogram value. From visual inspection of depth profiles of
logi0[Ks] between drillholes ER-5-4, UE-5n, and ER-5-3 in Figure 4.12, it appears that a
reasonable estimate of the range of lateral correlation of log;o[K}] in Frenchman Flat would be
between 477 m and 5585 m (the distances from drillhole ER-5-4 to drillholes UE-5n and
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ER-5-3). Certainly other information on the three-dimensional geometry of alluvial layers
would be useful for estimating lateral spatial continuity of K, for those radionuclides that
appear sensitive to the spatial distribution of mineralization zones or alluvial layers.

Figure 5.9 shows experimental variogram values for log;o[K}] for different radionuclides
computed for a lateral lag of 477 m from the XRD data from drillholes ER-5-4 and UE-5n. The
lag pairs were vertically shifted to account for difference in the depth of the mineralization zone
with high clinoptilolite abundance between 310-340 m depth in ER-5-4 and about 340-370
depth in UE-5n. The lateral variogram models shown were constructed by assuming the same
nugget and sill values and exponential structure used for the vertical variogram models, but
with adjusted range values, as shown in Table 5.3. The range was adjusted so that the
variogram models honor the experimental variogram values for all radionuclides but Cs and U,
which exhibit mostly micro-scale variability. The fitted range values vary from 1350 to 3900
m, which appears consistent with the appearance of lateral spatial correlation of mineral
abundance between drillholes spaced hundreds of meters apart and lack of spatial correlation
between drillholes spaced over 5 km apart. Comparison of vertical and lateral range values
indicates lateral:vertical anisotropy ratios ranging between 4.5:1 to 13:1. Considering the
difficulties in quantifying lateral spatial correlation listed above, these ratios could be greater.
The lateral-direction variogram model range parameters for log;o[K,] for the radionuclides
shown in Table 5.3 are uncertain because of the sparse data on lateral continuity of mineral
abundance.

Warren et al. (2002) suggest that the Frenchman Flat alluvial basin deposits consist of
coalesced fans having three dominant source areas — Rock Valley, Massachussets Mountain,
and the Ranger Mountains. Lateral continuity may be easier to track near the source areas and
more difficult to track in distal areas where fans are more interfingered. Lateral continuity of
logio[K4] would not necessarily be isotropic. More lateral continuity could be expected in the
downslope direction of the ancient alluvial fan surfaces. In any case, lateral continuity of
logio[ K] is most likely dominated by the lateral continuity of mineralization zones or alluvial
layers. Because the alluvial layers represent different episodes of alluvial fan deposition, some
lateral gradation of grain size distribution and mineralogy should be expected.
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Figure 5.9 Experimental and modeled lateral direction variograms of log1o [K4] for radionuclides
Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu based on XRD mineral abundance data from drillholes
ER-5-4, UE-5n, ER-5-3, and U-11g-1 in Frenchman Flat.
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Table 5.3 Parameters for lateral variogram models of logo[K,] shown in
Figure 5.9 for radionuclides Ca, Cs, Sr, Am, Eu, Sm, Np, U, and Pu.

Range

Radionuclide Nugget  Sill (m) Lateral Variogram Model Equation
Ca 0.015  0.105 1750 y(h,)=0.015+0. 090[1 exp( 1750m)]
Cs 0.040 0040 © y(h,) =0.040

Sr 0015 012 1800  y(h )=0.015+0.105]l - exp(- )|
Am 0.016  0.052 3500  y(k )=0.016+0.036]1 - exp(— 22|
Eu 0.020  0.065 2400  y(h,)=0.020+0.045]1 — exp(— o]
Sm 0.028  0.087 1350  y(h )=0.028+0.059]1 - expl— )]
Np 0.020 0065 1750  y(h )=0.020+0.045]1 - exp(- )|
U 0.023 0027 3000  y(h)=0.023+0.004l - exp(- i )|
PuO;=5) 0018 0043 3900  y(h,)=0.018+0.043[l - exp(- )|

Pu(0:=-10) 0017  0.042 3900  y(p )=0.017 +0.0421 — exp(- -2 )]

)

Pu(0r=-15)  0.016  0.041 3900  y(x,)=0.016+0.041[1 - exp(-

o

5.3.3 Interpretation

In application to the logio[K4] values derived in Chapter 4, vertical and lateral variogram models
indicate that spatial variation of K is attributed in part to micro-scale variability and in part to
subregional-scale spatial variability related to mineralization zones or alluvial layers. For Cs and
U, most of the spatial variability is attributed to micro-scale variability. For Am, Eu, Sm, Np,
and Pu, about 30-45% of the spatial variability of K} is related to micro-scale variability. The
remaining component of spatial variability has a vertical range of correlation between 200 and
400 m, indicating sensitivity to different mineralization zones or alluvial layers. According to
the lateral variogram analysis, the lateral range of correlation of K, ranges may be between 1350
m and 3900 m for different radionuclides. These ranges are consistent with the observations that
mineral abundances appear correlated between the drillhole pairs ER-5-4 and UE-5n and the
drillhole pair ER-5-3 and U-11g-1, but not the drillhole pair ER-5-4 and ER-5-3. Ca and Sr
exhibit the largest spatial variability, most of which can be attributed to variations in
clinoptilolite abundance between different mineralization zones or alluvial layers. Considering
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that the histograms of log;o[K,] for Ca and Sr are bi-modal, unlike the log-normal K,
distributions for other radionuclides, the spatial variability of K for Ca and Sr may need to be
analyzed by categorizing K, into high and low values.

5.4 Application of Variogram Models to Reactive Transport Models

Variogram models of mineral abundance and K, could be applied to reactive transport models in
two ways, which are described in further detail in Chapter 6:

e Zones or “layers” having similar mineral abundances could be identified, and a
variogram model could be used to characterize the spatial variability of mineral
abundance of each sorbing mineral within each zone. The degree of variability of
mineral abundance within a zone would depend on the magnitude of the range of
correlation relative to the resolution or grid-block size of the transport model. Based
on the interpretation of the XRD data in this report, hematite is the only sorbing
mineral that exhibits measurable spatial correlation within a zone, so it may be
plausible to assume constant K;s within each layer for most radionuclides. The
spatial correlation of hematite might be considered in a reactive transport model with
a grid-block size of 5 m or less. The lateral continuity of the zones or layers could be
inferred from interpretations of 3-D geometry of the alluvial layers.

e Variogram models of K,; could be used to generate random fields or stochastic
“realizations” that explicitly account for spatial variability of K 4 throughout the
alluvial section (including different mineralization zones or alluvial layers).

Estimates of lateral spatial variability could possibly be inferred from variogram
analysis of Kys from closely spaced drillholes. The concept of treating K, as a
spatially correlated random field has been previously applied in hydrology (e.g.,
Garabedian et al., 1988; Tompson, 1993; Tompson et al., 1996; Miralles-Wilhelm and
Gelhar, 1996; Abulaban and Neiber, 2000; Pawloski et al., 2000; Painter et al., 2001).
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6 Incorporation of Mineralogic Considerations into
Reactive Transport Modeling

The purpose of analyzing mineral abundances in alluvium from drillholes in Frenchman Flat is to
characterize the spatial distribution of radionuclide sorbing minerals, which needs to be
considered in CAU and HST modeling of radionuclide transport. Two reactive transport
modeling approaches have been used to relate radionuclide sorbing mineral abundance to
radionuclide retardation:

The mechanistic approach, where aqueous speciation, combined with surface
complexation and ion exchange sorption reactions and sorbing mineral characteristics
are explicitly used to evaluate radionuclide retardation, as implemented in the HST
transient streamline simulations for the Cheshire test based on the CRUNCH code
(Pawloski et al, 2001)."

The K, approach, where the mechanistic information for each radionuclide-mineral
pair under specific aqueous conditions is reduced to a distribution coefficient (Kz). A
radionuclide K in an alluvium of mixed mineralogy can then be calculated using the
component additivity approach (see Chapter 4). This approach was also applied in
the HST particle simulations for the Cheshire test (Pawloski et al., 2001).

In regard to addressing spatial variability of radionuclide retardation, two plausible approaches

are:

The facies-based approach, where the spatial distribution of radionuclide retardation
is defined according to a combination of geologic interpretation in a three-
dimensional geometric framework of “alluvial layers” or “chemofacies” to categorize
rocks by distinctive mineralogic and lithologic characteristics. Within each rock
category or “facies,” the hydraulic and reactive transport properties may be
considered constant or described by statistical properties. This approach may also
require an evaluation of the spatial distribution of sorbing and non-sorbing minerals
within each of the mineralization zones, chemofacies, or alluvial layers. If the
categorization is solely concerned with the spatial distribution of sorbing minerals,
the categories are, in effect, chemofacies, as described in Section 3.5. The mineral
distribution parameters within a chemofacies can then be used by either the
mechanistic or K, approaches to evaluate retardation for each radionuclide.''

' In HST simulations, dissolution and precipitation reactions were also included in the mechanistic model. These
reactions are not discussed in this report.
"' In the Cheshire HST simulations. the chemofacies approach was used. However, the entire modeling domain was

defined as one “layer” (mafic poor Calico Hills lava) and only an evaluation of heterogeneous mineral distribution
within this “layer’” was necessary.



e The K; “random field” approach, where the conceptual model for the spatial
distribution of radionuclide retardation treats K, as a collection of random variables
positioned in space with spatial correlation defined by a variogram model. This
approach requires translating sorbing mineral abundances into Ky for individual
radionuclides using the component additivity concept described in Chapter 4. In this
approach, K distribution information replaces mineral distribution information. The
pattern of spatial variability of K is described by a random field model with
parameters that are specific to each radionuclide.

In both the chemofacies and K; random field approaches, grid block sizes are finite, requiring
assumptions about the effective or “average” mineral abundances and radionuclide retardation
over finite volumes. These effective values may depend on grid block size. The analysis of
mineral abundance data in this report indicates that spatial dependencies in mineral abundance
and K do exist within and between zones or “alluvial layers” in Frenchman Flat. These spatial
heterogeneities of radionuclide sorbing minerals may need to be considered in both CAU and
HST scale models.

If a mechanistic approach is used to predict radionuclide transport, a chemofacies approach is
more practical for describing spatial variations of sorbing mineral abundance. This is because
the mechanistic approach directly relies on a description of the radionuclide sorbing mineral
abundances. Based on the analysis in Chapter 3, the major spatial variations of sorbing mineral
abundance are zonal. However, if a K; approach is used to predict radionuclide retardation,
either a chemofacies or a K; random field approach may be practical. The practicality and
applicability of either approach depends on geologic interpretation, model resolution and scale,
data availability, and appropriateness to site conditions.

6.1 Scaling Issues

The mineral abundance data from drillholes ER-5-4, UE-5n, and ER-5-3, and U-11g-1 were
obtained from core samples, which are much smaller than typical grid block sizes in numerical
models. Considering differences in mineral abundance in sidewall splits from sidewall cores and
the variogram analysis of Chapter 5, much small or “micro” scale variability is expected.
Therefore, some assumptions must be made on scaling data to effective model parameters.

Garabedian et al. (1988) and Gelhar (1993) suggest that the effective retardation coefficient,
(R d), is an arithmetic average of local point values. Pawloski et al. (2000) appear to confirm the

validity of the relationship in reactive transport simulations of radionuclide transport for the
Cambric test.

In transport simulations of Np for alluvium near Yucca Mountain, NTS, Painter et al. (2001)
assumed an effective K, based on the geometric mean of a log-normal K distribution. In these
Np transport simulations, the effective K, yielded similar breakthrough behavior (with slightly
delayed initial breakthrough) compared to a random field assumption with a log-normal
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distribution of K;. However, the point was made that these modeling results pertained only to
Np for the specific statistical model used.

Based on the results of univariate statistical analysis in Chapter 4 and variogram analysis in
Chapter 5, chemofacies and random field approaches are described below as plausible means for
addressing spatial variability of K, in Frenchman Flat.

6.2 The Chemofacies Approach

The variogram analysis in application to mineral abundance (Section 5.2) indicated that spatial
variation of the abundance of sorbing and non-sorbing minerals within mineralization zones
(which partly correspond to alluvial layers as discussed in Section 3.5) was largely attributed to
micro-scale variability. Assuming arithmetic averaging of mineral abundance within zones,
most of the spatial variation of mineral abundance in Frenchman Flat is attributable to the
different mineralization zones or alluvial layers. Therefore, consideration of heterogeneity of
sorbing mineral abundance in Frenchman Flat based on a chemofacies approach could be
accomplished by including layers or zones with different sorbing mineral abundances. A
comparison of the alluvial layering interpretation developed by Warren et al. (2002) and a
chemofacies interpretation was described in Section 3.5

An interpretation of the three-dimensional geometry of the alluvial layers in Frenchman Flat
could provide a framework for developing a model of spatial variation of sorbing mineral
abundances. Based on our chemofacies interpretations, much of the geometric structure of
chemofacies is directly associated with the alluvial layers. However, some chemofacies may be
recognized as sub-units within the alluvial layers, such as zones with distinctively different
abundances of calcite, hematite, and smectite recognized within alluvial layers identified in
ER-5-4. Other chemofacies may be composites of alluvial layers that have been distinguished
based on textural or chemical differences not examined in this study. Abrupt lateral changes, as
observed in differences between ER-5-4 and ER-5-3, may reflect complexity of alluvial fan
deposition combined with different source areas. Importantly, some depth intervals, such as
between 780 and 900 m depth in ER-5-4, clearly consist of complex interfingerings of lithologies
with different mineral abundances, which may need to be explicitly considered in development
of high-resolution HST scale models. In application to CAU models, interfingering may need to
accounted for by scaled effective properties. Comparison of chemofacies identified in ER-5-4
and ER-5-3 indicates that some chemofacies might exhibit lateral gradations of sorbing mineral
abundances, which may need to be considered in development of either HST or CAU scale
models.

6.3 K, Approach

In the K approach to modeling radionuclide transport, the retardation factor, Ry, linearly scales
the transport velocity. R is related to K by

Rd :1_+_ (l—n)ijd
n
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where n is porosity and p; is solid density of the porous media. Different radionuclides will have
different K factors that depend on the abundances of sorbing minerals, as shown in Section
4.1.3. The spatial distribution of K for each radionuclide was examined based on variogram
analyses in Section 5.3.

6.3.1 Zonal Approaches

Log-normal distributions of K; were evident for the radionuclides Am, Cs, Eu, Np, Pu, Sm, and
U (see Section 4.2). For these radionuclides, it is conceivable that Frenchman Flat alluvium
could be treated in a large-scale transport model as one zone having an effective K; based on the
arithmetic mean, geometric mean, or another volumetric average. The validity of using a single
effective K throughout a model domain would largely depend on the scale, location, and desired
resolution of the simulations. The use of single effective K;s could be tested by comparing
simulations of transport behavior with or without spatially variable K; and permeability (e.g.,
Painter et al., 2001).

For the radionuclides Ca and Sr, the log-transformed frequency distributions of K are clearly bi-
modal. As indicated in section 4.1.3, Ks for Ca and Sr strongly depend on clinoptilolite
abundance. The log-scale histograms shown in Figures 4.2 and 4.10 indicate that cutoff values
of K, at approximately 300 and 200 mL/g for Ca and Sr, respectively, separate the K;s into two
zones of relatively low K, and high K,;. These histograms also indicate that high Ky zones for Ca
and Sr are prevalent in northern Frenchman Flat — as evident in ER-5-3 and U-11g-1 — and
low Ky zones for Ca and Sr are prevalent in southern Frenchman Flat — as evident in ER-5-4
and UE-5n. Therefore, the spatial distribution of K, throughout Frenchman Flat largely depends
on the spatial locations of these relatively high and low K; zones.

To illustrate this concept, the mineral abundance data in ER-5-3 and ER-5-4 were categorized
into low and high K, based on 300 and 200 mL/g cutoffs for Ca and Sr. Categorical
geostatistical models were developed to characterize the vertical spatial variation of the low and
high K zones for both Ca and Sr using two-dimensional Markov chains (Carle and Fogg, 1997).
For a two-category Markov chain model, the only parameters needed are the proportions and
mean lengths in the vertical and lateral directions for one of the two categories (the high K,
category was chosen). The proportions were taken from the composite of the ER-5-4, UE-5n,
ER-5-3, and U-11g-1 mineral abundance data. The vertical mean lengths were inferred from
vertical transition probability measurements (Carle and Fogg, 1996). The lateral mean lengths
were estimated at 2000 m, based on strong correlation of mineral abundances in ER-5-4 and
UE-5n (477 m apart) and lack of correlation between ER-5-4 and ER-5-3 (5585 m apart).
Geostatistical realizations of the low and high zones could then be generated based on the
Markov chain model. Figure 6.1 shows realizations of low K, and high K zones for Ca and Sr
between ER-5-4 and ER-5-3. The data from ER-5-4 and ER-5-3 are used to condition the
realizations. These realizations yield a geologically plausible model of zonal variations of K
within Frenchman Flat with patterns of heterogeneity related to different episodes of alluvial fan
deposition.
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Figure 6.1 Categorical realizations of “low Ky and “high K’ zones for Ca and Sr. Conditioning
of realizations with data from drillholes ER-5-4 and ER-5-3 is indicated by black (low Kj) and

white (high K.
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6.3.2 Gaussian Random Field Approaches

The Gaussian random field is the most common stochastic conceptual model for considering
spatial variation of K, for reactive transport modeling in hydrology (Garabedian et al., 1988;
Tompson (1993); Tompson et al. (1996); Miralles-Wilhelm and Gelhar, 1996; Abulaban and
Neiber, 2000; Pawloski et al., 2000; Painter et al., 2001). In particular, a log-normal distribution
and exponentially decaying spatial covariance of Ky is typically assumed. In some cases, a
negative cross-correlation with permeability is assumed.

In Section 5.3, a combination of nugget and exponential variogram model structures were found
to provide plausible fits to the experimental vertical variograms of K, for all radionuclides.
Assuming second-order stationarity, these variogram models can be directly converted to
exponentially decaying spatial covariance models. The nugget structure is attributed to micro-
scale variability that may either be explicitly included in the random field model or folded into
the average or effective Ks.

To illustrate the random field approach, realizations of K, for each radionuclide were generated
using the code “sgsim” from the Geostatistical Software Library (Deutsch and Journel, 1998)
based on the variogram models developed in Section 5.3. Single realizations of log;o[Kg] for
each radionuclide are shown in Figures 6.2 and 6.3. These realizations extend 1500 m vertically
and 15 km laterally, reflecting possible spatial distributions of K, over a large cross-sectional
area of Frenchman Flat. The differences in the spatial structure of K, for different radionuclides
are attributed to differences in variogram model structure. For example, Am shows spatially
correlated regions of relatively low or high K, whereas Cs shows only random variation. The
variogram model for Am has pronounced spatial correlation, whereas the variogram model for
Cs is pure nugget without spatial correlation, which yields only small-scale variability.

As discussed earlier, the frequency distributions for Ca and Sr were bi-modal and thus do not
conform to the Gaussian random field conceptual model. The realizations shown in Figures 6.2
and 6.3 for Ca and Sr were nonetheless constructed under the assumption of a Gaussian random
field. The spatial variation of K in these realizations exhibits the largest variations in magnitude
compared to other radionuclides, reflecting the high sill parameters of the fitted variogram
models. A problem with using a Gaussian random field model for Ca and Sr is that the
realizations produce a normal distribution of log;o[ K] values, which will contain an excess of
intermediate values instead of two modes of low K; and high K.
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Figure 6.2 Gaussian random field realizations of spatial variability of K, for Am, Ca, Cs, Eu,
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6.3.3 Hybrid Approaches

Alternatively, zonal and Gaussian random field geostatistical approaches can be combined to
address the bi-modal K, distributions evident for Ca and Sr. Gaussian random fields can be used
to conceptualize spatial variation of K,; within the low and high K zones. Figure 6.4 shows
realizations of K, of Ca and Sr with Gaussian random field spatial variation within the low Ky
and high K; zones. The Gaussian random fields are based on the variogram models for spatial
variation of K for Ca and Sr within low K, and high K; zones shown in Figure 5.8. The zonal
random fields shown in Figure 6.1 can be used as templates for choosing K;s from either the
realization for low or high K; zones. Figure 6.5 illustrates the result of a combination of the
zonal and Gaussian random field approaches. The resulting realizations reflect three scales of
spatial variability: micro, zonal, and within-zone.
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6.3.4 Application to CAU Models

Grid block size for CAU models will certainly be too large to consider the high-resolution spatial
variation of Kz shown in Figures 6.2 to 6.5. Single effective Kzs could be plausibly assumed in
CAU models for radionuclides that exhibit mostly micro-scale spatial variability — Cs and U, in
particular.

For other radionuclides that exhibit significant spatial variability, measurable spatial correlation,
and log normal distributions — Am, Eu, Np, Pu, Sm — several approaches could be considered:

e Assume effective K;s based on arithmetic or geometric mean values.

e Assume arithmetic scale averaging of K, and generate Gaussian random field models
at larger grid block sizes. However, if the grid block size is larger than the range of
correlation, this approach will have no effect compared to assuming a single effective
value.

e Derive effective K;s from numerical modeling experiments having high-resolution
spatial variation of K;. Note that such experiments would need to address the issue of
spatial cross-correlation of K; with permeability.

e Assume that spatial variations of K are primarily related to chemofacies or alluvial
layers with distinctive mineral abundances as identified, for example, in Section 3.5
or by Warren et al. (2002). Base K;s on average mineral abundances for the
chemofacies or alluvial layers. This approach would require development of a three-
dimensional model of the alluvial layers and important chemofacies within
Frenchman Flat.

For radionuclides that exhibit strong dependence on clinoptilolite abundance — Ca and Sr, in
particular — CAU scale models in Frenchman Flat will need to consider location dependent Kgs.
The difference in average K, between the low K, and high K, zones is about a factor of five for
both Ca and Sr. For these magnitudes of K, retardation coefficients are nearly proportional to
K, producing an approximate factor of 5 difference in the retardation coefficients. Such zonal
variations in K, for Ca and Sr could be also be addressed in several ways:

e Using a three-dimensional model of the alluvial layers in Frenchman Flat
(chemofacies approach).

e Apply a categorical geostatistical approach as illustrated in Figure 6.1, but at a
coarser scale in three dimensions.

¢ Interpolate Kys for Ca and Sr throughout Frenchman Flat to account for large-scale

trends, such as generally higher K;s in northern Frenchman Flat relative to central
Frenchman Flat.
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6.3.5 Application to HST Models

Grid block sizes for HST-scale models are much smaller than for CAU-scale models — as small
as 2 m for HST modeling of the Cambric test in Frenchman Flat (Pawloski et al., 2000).
Therefore, HST models can certainly resolve the subregional-scale spatial variation of K, evident
from the mineral abundance data examined in this report.

HST models can be expected to extend to several hundred meters in the vertical direction.
Therefore, a HST model will usually span several chemofacies or alluvial layers. Several
distinctive layers were in fact recognized in HST modeling of the Cambric test based on
permeability data and lithologic descriptions (Pawloski et al., 2000). The examination of mineral
abundance data in this report certainly suggests that interpretations of chemofacies and alluvial
layers can account for much of the spatial variation of Kj.

Given that the spatial variation of K, for several radionuclides is expected to primarily relate to
different chemofacies or alluvial layers, HST models should attempt to identify and incorporate
zonal or layered heterogeneity of K;. Smaller-scale heterogeneity of K, expected within the
zones or layers may be plausibly accounted for by effective Kys for each zone or layer. The
examination of mineral abundances within zones in Chapter 3 indicated that spatial variability
within zones is mostly related to micro-scale variability with correlation ranges of 1 m or less.
The one exception was for hematite, which exhibited a vertical spatial correlation of about 5 m.
However, this small-scale spatial variation of hematite may not have much impact to HST
modeling. Hematite abundances are relatively low, and recent flow-through data have suggested
that the effective influence of iron oxides in radionuclide retardation may be quite small (Zavarin
et al., 2002).

Another consideration for HST models is that some of the alluvial layers appear to be situated in
“transition zones” as described in Chapter 3. The transition zones can be attributed to portions of
the alluvial sequence where alluvial deposits of different lithologies or source areas are
interfingered. The transition zones could provide regions of most intense heterogeneity of both
hydraulic and chemical properties.

Alternatively, if the chemofacies or alluvial layers cannot be identified, the Gaussian random
field or hybrid zonal/random field approaches described in sections 6.2.4 and 6.2.5 could be
applied to the HST models. The vertical variogram model parameters given in Tables 5.1, 5.2,
and 5.3 could be applied at different model resolutions. Lateral variogram models parameters
are more uncertain, but plausible correlation ranges would range between about 1000 to 5000 m.
Given the strong sensitivity of Ca and Sr K| to clinoptilolite abundance, the models of spatial
variability for K, of Ca and Sr would need to be customized to different locations in Frenchman
Flat. Alternatively, a trend in Kys could be added to the Gaussian random field values.
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7 Conclusions

The overall goal of this study is to understand and characterize the spatial variation of sorbing
minerals in Frenchman Flat alluvium using geostatistical techniques, with consideration for the
potential impact on reactive transport of radionuclides. To achieve this goal requires an effort to
ensure that plausible geostatistical models are used to characterize the spatial variation of
minerals. The models must also be plausible from a geological perspective. Spatial variation of
mineral abundance is caused not only by random processes but also by ordered geologic
processes such as alluvial fan progradation, provenance, and in-situ alteration. Much of the
spatial variation of sorbing mineral abundances is attributable to different “chemofacies” within
which zonal mean abundances are relatively uniform. The chemofacies are, in large part,
associated with the alluvial layers interpreted by Warren et al. (2002).

The preliminary data analysis in Chapter 3 using depth profiles of mineral abundance,
histograms, and probability plots revealed that mineral abundances typically exhibit micro-scale
variability superposed on large-scale variability that occurs in zones with relatively constant
mean mineral abundances. From a transport modeling perspective, the micro-scale variability,
which occurs at scales of 1 m or less, can be practically addressed by use of effective properties.
The larger-scale variability — referred to as “mineralization zones”” — should be considered in
HST models and may need to be addressed in CAU scale models for certain radionuclides. The
sorbing minerals calcite, clinoptilolite, and hematite exhibit some zones where abundances are
below detection limits. Mica and smectite appear to be ubiquitous.

Comparison of depth profiles of mineral abundance between drillholes ER-5-4, ER-5-3, UE-5n,
U-11g-1 indicates that mineralization zones are laterally continuous over scales greater than
about 500 m and less than about 5000 m. Variations in thickness and attitude (e.g., dip and strike
of bounding surfaces) of mineralizations zones or alluvial layers are uncertain. The major

differences in sorbing mineral abundances in northern Frenchman Flat compared to central
Frenchman Flat are:

e Clinoptilolite is more abundant.

¢ Mica is slightly less abundant at greater depth.

e Hematite is not present below a depth of 460 m.

¢ Calcite exhibits more extensive zones of high abundance.

e Smectite abundance is slightly lower at greater depths.

Based on groupings of mineralization zones, nine chemofacies were interpreted in ER-5-4. The
differences between chemofacies and alluvial layers are attributed to:
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e Some alluvial layers have distinctive abundances of non-sorbing minerals, but not
sorbing minerals.

e Some chemofacies are subunits within an alluvial layer.

e Different alluvial layers with similar distributions of zonal mean abundances of
sorbing minerals are interpreted as the same chemofacies.

Nonetheless, the interpretation of alluvial layering by Warren et al. (2002) provides a useful
geometric framework for modeling spatial variations of mineral abundance. Some zones exhibit
complex interfingering of chemofacies. These transition zones also exhibit variations in
lithology or source area (Warren et al., 2002) and, thus, are expected to be highly heterogeneous
in both geochemical and hydraulic properties. Because the data examined in this study are
located in central and northern Frenchman Flat, more consideration of southern alluvial source
areas would be needed for basin-wide models.

In an analysis of correlation between abundances of different minerals, several conclusions could
be made:

¢ Within the sorbing minerals, clinoptilolite shows significant correlation with calcite
(positive) and smectite (negative).

¢ Hematite shows no correlation with any other sorbing or non-sorbing minerals.

¢ All non-sorbing minerals except for kaolinite and sanidine show significant
correlation with at least one sorbing mineral.

s The negative correlation between calcite and bytownite suggests that calcite may
have formed as a result of weathering of the Ca-rich plagioclase.

Considering that both CAU and HST scale models may employ K;s to simulate retardation of
radionuclide transport, the XRD mineral abundances were also evaluated from a K perspective.
In Chapter 4, K, for Am, Ca, Cs, Eu, Np, Pu (at different oxygen fugacities), Sm, Sr, and U, is
linked to mineral abundance by the component additivity approach (Zavarin, 2002). Using this
approach, K, can be geostatistically evaluated as a random variable that directly relates to
radionuclide retardation parameters for particle tracking models. The following are conclusions
on K, variation in Frenchman Flat:

e K, trequency distributions for Am, Eu, Np, Pu, Sm, and U appear to be log normal
and exhibit no significant vertical or lateral variation.

o Compared to mineral abundance, spatial variation of K, throughout Frenchman Flat is

less zonal and appears to behave more like a spatially correlated random field, except
for Ca and Sr.
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K frequency distributions for Ca and Sr appear to be bi-modal and strongly
dependent on clinoptilolite abundance, which varies significantly vertically and
laterally. Large-scale heterogeneity of zeolite is a key issue for CAU and HST scale
modeling of radionuclide transport.

HST models may need to incorporate zonal variations of K; based on alluvial layers
or chemofacies.

Chapter 5 applies the geostatistical technique of variogram analysis to quantitatively evaluate
spatial variability of mineral abundance and K, within Frenchman Flat alluvium. In application
to mineral abundances within mineralization zones, the variogram analyses conclude:

With the exception of hematite, the spatial variation of mineral abundance within
mineralization zones is essentially random and has no spatial correlation.

The major component of spatial variation of mineral abundance is attributed to
different mineralization zones.

In application to K, the following conclusions can be made:

Spatial variation of K, for Cs and U is essentially random with little or no spatial
correlation.

Approximately 30-45% of spatial variation of K, for Am, Eu, Sm, Np, and Pu is
attributed to micro-scale variability, and the remainder is attributed to subregional
variability associated with mineralization zones or alluvial layers.

The 163 data were adequate for development of vertical variogram models.

Lateral variogram models could be developed by analyzing data from ER-5-4 and
UE-5n for one lag of 477 m and assuming the same nugget and sill values as used in
the vertical variogram models.

Comparison of vertical and lateral variogram range values indicates lateral:vertical
anisotropy ratios ranging between 4.5:1 and 13:1. Considering the difficulties in
quantifying lateral spatial correlation, the ratios could be greater.

Spatial variability of K, for Ca and Sr is much greater than for other radionuclides
because of the strong dependency on clinoptilolite abundance.

Chapter 6 applies the overall geostatistical analysis of spatial variability conducted in Chapters
3-5 to development of models of spatial variability of mineral abundance. The chemofacies
approach is recommended for addressing spatial variability directly from sorbing mineral
abundance, such as in application of a mechanistic reactive transport model. Using the
component additivity approach, the chemofacies approach could also be applied to development
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of effective Kys for different radionuclides. The chemofacies approach could be integrated with
three-dimensional interpretations of alluvial layer geometry to develop realistic models of spatial
variation of mineral abundance or K; within Frenchman Flat alluvium. A K random field
approach is also suggested for simulation of subregional scale spatial variability of K; within
Frenchman Flat alluvium for Am, Eu, Sm, Np, and Pu. For Cs and U, it is conceivable that a
single effective value of K; could be assumed throughout most of Frenchman Flat. The
variogram models for K; developed in Chapter 5 can be applied to generation of stochastic
realizations of K, based on Gaussian random fields. For Ca and Sr, a hybrid stochastic
simulation approach that combines categorical and Gaussian random field approaches is
demonstrated to show how the bi-modality and lateral variation of the frequency distribution of
K, could be considered in simulation. Spatial variability within transition zones of interfingered
lithologies presents the most complex situation of heterogeneity in both geochemical and
hydraulic properties. Therefore, in high-resolution simulation of reactive transport of
radionuclides, such as HST modeling, it will be important to determine if transition zones are
present within the model domain.

Based on the experience of this study’s work in analyzing spatial variability of sorbing mineral
abundances and K, the effort to obtain core samples and apply XRD analysis to obtain high
quality data with detailed spatial coverage has been rewarding. The manner in which sorbing
minerals vary in the vertical direction within the Frenchman Flat is now confidently understood.
Some uncertainty remains in identifying the actual scale of “microscale” variability of mineral
concentrations, which appears to occur at scales less than 0.3 m for most minerals. Smaller
scales of variability could be effectively evaluated by identification of mineral concentrations in
“split” samples using the same method of analysis on many (e.g., 20+) core. Some uncertainty
also remains as a result of applying only XRD data to our geostatistical analysis. Incorporation
of SEM and petrographic data could provide greater confidence in the geostatistical model of
sorbing mineral abundance. Some insights have been gained on lateral spatial variability, but
considerable uncertainty remains on characterizing three-dimensional spatial variation.
Nonetheless, the scant lateral correlation analysis that could be made from the data is
encouraging in that plausible interpretations could be made, suggesting that future data collection
would be useful for further constraining uncertainty in reactive transport simulations.
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